
AD-A246 177
II~iIIll~llIIIJI111III11 11111)STGRADUATE SCHOOL

Monterey, California

OT
FEB 2 1199 .

THESIS

DESIGN AND IMPLEMENTATION OF A
COLLISION AVOIDANCE SYSTEM FOR

THE NPS AUTONOMOUS UNDERWATER VEHICLE
(AUV II) UTILIZING ULTRASONIC SENSORS

by

Charles Alan Floyd

September 1991

Thesis Advisor: Dr. Yutaka Kanayama

Approved for public release; distribution is unlimited.

92-04385

92 2 19044

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION UNCLASSIFIED lb. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;
distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

§4 NAME OF IERFORMMG ORGANIZATION 6b. OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

omputer Science Dept. (if applicable) Naval Postgraduate School
Naval Postgraduate School CS

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

8c ADDRESS (Cipy State. andZIP Cod) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK VO~r, L,,T
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)
DESIGN AND IMPLEMENTATION OF A COLLISION AVOIDANCE SYSTEM FOR THE NPS AUTONOMOUS UNDERWATER VE
HICLE (AUV II) UTILIZING ULTRASONIC SENSORS
MPERS NALU T HR(S)ioyd, Charles Aan

asteYP REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
FROM6/89 _T 09/91 September 1991 132

16. SUPPLEMENTARY NOTATIOIrhe views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the United States Government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIEL GRUP SB-GOUP Autonomous underwater vehicle (AUV), sonar, collision avoidance, 3-D

ID G graphical simulation, ray-tracing, least-squares fit, model matching.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
The recognition of underwater objects and obstacles by sonar has been explored in many forms, particularly

through the use of high-resolution imaging sonar systems. This work explores a method of providing real-time
obstacle avoidance and navigational position updating for an Autonomous Underwater Vehicle (AUV) by applying
regression analysis and geometric interpretation to sonar range data obtained from a low-cost, low-resolution, fixed-
beam sonar. The algorithm utilized by this method first develops a least-squares fit for sonar range data in a 2-D
manner. The parameters developed by this method are then compared to an environmental model for position
identification. If no match is achieved, then by applying the known geometry of the acoustic signal, an estimate for a
3-D surface is derived. This derived 3-D surface is then added to the environmental model to enable accurate path
planning and post-mission analysis information. This method is currently implemented on an operational AUV
operating in a well-defined orthogonal environment at NPS. The paper also discusses the simulation of the sonar
systems using a ray tracing technique in a real-time dynamic graphical simulation implemented on a Silicon Graphics
IRIS workstation.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED/UNLIMITED C] SAME AS RPT. [] DTIC USERS UNCLASSIFIED

a. N MF,,F RESPONSIBLE INDIVIDUAL 22b. TELEPHONEfInclude Area Code) 22c fat SYMBOL
utaNa Kanayama (408) 646-2095

Approved for public release; distribution is unlimited

DESIGN AND IMPLEMENTATION OF A
COLLISION AVOIDANCE SYSTEM FOR

THE NPS AUTONOMOUS UNDERWATER VEHICLE
(AUV II) UTILIZING ULTRASONIC SENSORS

by
Charles Alan Floyd

Commander, United States Navy
B.S.E.E., United States Naval Academy, 1975

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1991

Author: __,,_ ____ _ __ _,,
Charles Alan Floyd

Approved By: / ,v,,/ /KcL,:
Yutaka Kanayama, Thesis Advisp /

Yuheng LeevSecond Reader

Robert B. McGhee, Chairman,
Department of Computer Science

ii

ABSTRACT

The recognition of underwater objects and obstacl.;s by sonar has been explored in

many forms, particularly through the use of high-resolution imaging sonar systems. This

work explores a method of providing real-time obstacle avoidance and navigational

position updating for an Autonomous Underwater Vehicle (AUV) by applying regression

analysis and geometric interpretation to sonar range data obtained from a low-2ost, low-

resolution, fixed-beam sonar. The algorithm utilized by this method first develops a least-

squares fit for sonar range data in a 2-D manner. The parameters developed by this method

are then compared to an environmental model for position identification. If no match is

achieved, then by applying the known geometry of the acoustic signal, an estimate for a 3-

D surface is derived. This derived 3-D surface is then added to the environmental model to

enable accurate path planning and post-mission analysis information. This method is

currently implemented on an operational AUV operating in a well-defined orthogonal

environment at NPS. The paper also discusses the simulation of the sonar systems using a

ray tracing technique in a real-time dynamic graphical simulation implemented on a Silicon

Graphics IRIS workstation.

Aoe ? - -r -

By,

S1.i i t
fIX • m

TABLE OF CONTENTS

INTRODUCTION ... I

A. MOTIVATION FOR AUV RESEARCH .. 1

B. AUV CONCEPT ... 2

C. OBSTACLE AVOIDANCE ... 2

D. OBJECTIVES .. 3

E. THESIS ORGANIZATION ... 3

II. NPS AUV PROJECT AND RELATED AUV WORK 5

A. THE NPS AUV II VEHICLE .. 5

1. Vehicle Characteristics .. 5

2. Software Hierarchy ... 7

B. RELATED WORK .. 10

1. Sonar Range Finding .. 10

2. AUV Sonar Research .. 10

III. ULTRASONIC TRANSDUCER PROPERTIES

AND INSTALLATION .. 11

A. DATASONICS PSA-900 PROGRAMMABLE

SONAR ALTIMETER .. 11

1. Physical and Electrical Characteristics ... 11

2. Theory of O peration .. 12

3. Side Lobe Effects ... 13

4. Interference Problems ... 14

iv

5. Sonar Board Averaging ... 14

6. Noise Filtering ... 15

B. SONAR INSTALLATION ... 18

1. AUV Nose M ount ... 18

2. Com puter Interface .. 20

IV. EXTRACTION OF LINEAR FEATURES OF OBSTACLES 22

A. LEAST SQUARES FIT METHOD .. 22

1. Coordinate Transformation .. 22

2. Linear Regression Principles .. 24

B. BEGINNING A NEW% LINE SEGMENT .. 29

1. Test for R esiduals ... 29

2. Test for Ellipse Thinness ... 30

C. DESCRIPTION OF FEATURES IN TERMS OF

AUV WORLD MODEL ... 32

1. The Environmental Model .. 32

2. Position Identification and Updating .. 34

3. M odel Updating ... 35

V. SOFTWARE PROCESSES FOR REAL-TIME

OBSTACLE AVOIDANCE .. 38

A. SONAR SOFTWARE PROCESSES .. 38

B. INTERFACE WITH CONTROL GUIDANCE SYSTEM 40

C. MOTION ALGORITHM FOR OBSTACLE MAPPING 41

D. INTERFACE WITH ONBOARD MISSION REPLANNER 42

VI. EXPERIMENTAL RESULTS ... 43

A. EXPERIMENTAL RESULTS OF MODEL MATCHING 43

B. REAL-TIME OBSTACLE AVOIDANCE .. 44

C. ALTITUDE CONTROL ... 45

VII. SIMULATION AND POST-MISSION 3-D DATA MAPPING 48

A. AUV MISSION SIMULATOR .. 48

1. Overview .. 48

2. Sonar Simulation ... 48

B. POST-MISSION REPLAY ... 50

VIII. CONCLUSIONS AND RECOMMENDATIONS ... 53

A. CONCLUSIONS ... 53

B. RECOMMENDATIONS .. 54

APPENDIX A .. 55

APPENDIX B .. 59

APPENDIX C .. 79

LIST OF REFERENCES ... 117

INITIAL DISTRIBUTION LIST ... 120

vi

LIST OF FIGURES

Figure 2-1. NPS AUV II Vehicle Component Layout .. 6

Figure 2-2. NPS AUV II System Block Diagram ... 8

Figure 2-3. AUV Datafiow Diagram .. 9

Figure 3-1. 2-D View of the Shielded Sonar Beam ... 14

Figure 3-2. Illustration of Sonar Board Averaging ... 16

Figure 3-3. LUnfiltered Range Data Set 17

Figure 3-4. Filtered Range Data Set .. 18

Figure 3-5. AUV II Sonar Installation ... 19

Figure 3-6. Sonar-Computer Interface Diagram ... 21

Figure 4-1. World Coordinate Conversion ... 23

Figure 4-2. Representation of a Line .. 26

Figure 4-3. The Equivalent Ellipse of Inertia ... 28

Figure 4-4. Unterninated Line Fit ... 30

Figure 4-5. Terminated Line Segment .. 31

Figure 4-6. Constant Ellipse Thinness Ratio ... 33

Figure 4-7. Adaptive Ellipse Thinness Ratio ... 34

Figure 4-8. Cross-sectional View of a Sonar's Beam Pattern 37

Figure 4-9. Projection of Corner Points for 3-D Surface ... 37

Figure 5-1. Sonar Process Dataflow Diagram .. 39

Figure 6-1. Sample Range Data Set ... 43

Figure 6-2. Model Matching Results ... 44

Figure 6-3. Obstacle Avoidance Test .. 46

vii

Figure 6-4. Altitude Controller Performance .. 47

Figure 7-1. Simulated Sonar Beam Using Seven Rays 49

Figure 7-2. False Apparent Range Caused by Reflection................................ 50

Figure 7-3. Graphical Mission Replay .. 52

Vill

ACKNOWLEDGMENT

There is very little accomplished in the world today by an individual acting alone. This

is certainly true of the work represented here. Having spent 18 months working on this

project, I have had the opportunity to work with and learn from a large group of professors,

technicians, and fellow students. It would be difficult to acknowledge all of them, but it

would be inexcusable not to do so for those who had the most impact on my work. For their

project leadership and knowledgable guidance of my work. I owe a large debt of gratitude

to Professors Tony Healy and Bob McGhee. The regular exchange of ideas fostered by

them made the AUV Project a total learning environment for the computer science and

engineering students. For their technical assistance I would like to thank Tom Christian.

Jim Scholfield, Jim Selby, Russ Whalen, and especially Karsten Bornholdt. For their

willing assistance in making the NPS swimming pool available to us on a regular basis,

thanks to Petty Officers First Class Goarcke and Martin.

For his friendship and assistance with all phases of my work, I would like to thank

Dave Marco. His personable nature and knowledge of control theory enabled me to learn

much more than what was required for my work.

As a research advisor, Professor Kanayarna is without equal. His vast knowledge of

robotics, mathematics, and guidance made our association a true learning experience for

me. His gentle demeanor and personality make him a role model for anyone desiring to

develop their skills in interpersonal relationships, as well.

Finally, loving thanks to my wife, Linda, my son Ryan, and my daughter, Ashleigh,

for their understanding when I spent my evenings in the lab.

ix

1. INTRODUCTION

A. MOTIVATION FOR AUV RESEARCH

Remotely operated air and land vehicles hav been developed to extend the range of

sensors or weapons of military units. The Israeli Air Force utilized remotely piloted

vehicles (RPVs) for reconnaissance and electronic intelligence collection prior to the

successful air strikes in the Bekka Valley in 1982. This utilization of RPVs as tactical

probes resulted in zero losses to the Isracli Air Force, and near-total destruction of t,

Syrian Air Force [Ref. 11.

Current Maritime Strategy emphasizes the U.S. Navy's role in a forward area strategy

conducting operations in or near enemy waters [Ref. 2]. Given the Soviet Navy's "bastion"

defense strategy, utilizing multiple layers of defensive units to protect strategic missile

submarines, an underwater vehicle could serve as an effective tactical probe. Due to the

long-range aspect of such a mission and the presence of numerous enemy units, the

presence of a "mother" platform providing a radio control link is not feasible. An

autonomous underwater vehicle (AUV) with onboard sensors and control units, capable of

carrying out a preplanned mission without external guidance, has been shown to be of

potential military value and cost effectiveness [Ref. 1].

While the attention given to Soviet and Warsaw Pact military strategies may have

lessened due to the decline of Communism in Eastern Europe and the Soviet Union, events

in and around the Persian Gulf have validated the need for truly autonomous vehicles to

assist in effecting the Maritime Strategy.

I Ml l l i I II mu m mm mun nenmmumme mu l |I

Numerous missions are conceivable for an AUV. Some typical missions might include

the following:

" Tactical probe
" Covert surveillance
* Mine warfare
* Weapons delivery
* Underwater terrain mapping.

Equipped with the appropriate sensors and manipulators, an AUV could carry out these

missions without exposing tactical units or personnel to danger, and for a lower cost.

B. AUV CONCEPT

In the simplest form, an AUV is an unmanned submersible vehicle with onboaru

systems and sub-systems that provide motive power, motion control, navigation, obstacle

detection and collision avoidance. To be truly autonomous, the vehicle should be able to

execute a planned mission by controlling and monitoring the onboard systems without any

external input. It should be able to replan its mission in the event of internal anomalies, such

as sub-system degradation, and it should have the capability of replanning its path to avoid

previously unknown obstacles [Ref. 3]. While the above qualities outline the minimum re-

quirements for a simple AUV, a realistic mission-capable AUV would necessarily carry

additional, possibly specialized, mission-dependent sub-systems and sensors. The Naval

Postgraduate School (NPS) AUV II is designed to model the simple AUV concept.

C. OBSTACLE AVOIDANCE

The concept of obstacle avoidance for an AUV entails more than simply turning the

vehicle in a predefined manner to avoid a collision. In the context of an AUV conducting

a predefined mission, the concept of obstacle avoidance carries the implicit notion that the

AUV will attempt to continue its mission by replanning its path around the obstacle. This

further implies two additional capabilities, the ability to consult a stored modl of the en-

vironment, and the ability to detect, recognize, and quantify previously unknown obstacles

2

so that they may be added to the stored model [Ref. 3]. This can be simplified into the fol-

lowing steps:

* Detect the obstacle.
* Perform a safety maneuver to avoid the obstacle.
• Perform other maneuvers to extract obstacle features.
• Add the obstacle to the stored environmental model.
" Replan the path to avoid the obstacle while continuing the mission.

This thesis will address all but the final step. Work on the path replanning problem has been

addressed by other NPS AUV II project team members [Ref. 4].

D. OBJECTIVES

This thesis will address the following research questions:

" How can data from ultrasonic sensors be best utilized to recognize obstacles
during operation of the NPS AUV II?

• What is the optimal configuration for ultrasonic sensors on the AUV II to
provide obstacle detection and terrain data collection for post-mission
analysis?

" What type of motion algorithm will best provide collision avoidance and
obstacle feature extraction?

" How can sensor data be utilized in post-mission analysis to generate a 3-D
terrain model?

This research was designed to move the NPS AUV 11 project into its next phase of devel-

opment by providing a stable test platform capable of maintaining a collision-free path

while conducting missions in its current environment, the NPS swimming pool. At the out-

set of this research, the AUV II had no sensors installed and was capable of performing only

simple, open-loop missions in the swimming pool.

E. THESIS ORGANIZATION

Subsequent chapters of this work will address the research questions posed above.

Chapter II describes the NPS AUV II in terms of its physical characteristics as well as its

control and software hierarchy. This section describes previous work done on this project.

3

Chapter II also examines the most current work on sonars and AUVs. Chapter III provides

the theoretical framework for sonar system operation, the physical and electrical character-

istics of the sonar chosen for the NPS AUV 11, and some of the problems inherent with these

systems and their installation.

Chapter IV discusses the extraction of linear features of obstacles by means of a least

squares fit algorithm. The algorithm and the particular tests performed on sonar range

inputs are examined, also. Chapter V covers the utilization of the information developed by

linear feature extraction by the collision avoidance system and other processes.

Experimental results are presented in Chapter VI. Pre-mission simulation and post-mission

analysis and 3-D diplay of mis.,ion dala is discussed in Chapter VII. Finally, conclusio;,

regarding the viability of this particular approach to collision avoidance and

recommendations for further study are presented in Chapter VIII.

4

II. NPS AUV PROJECT AND RELATED AUV WORK

The Naval Postgraduate School's AUV project was started in 1987, and involves

personnel from the Mechanical Engineering, Computer Science, and Electrical

Engineering departments. The project has evolved through design and feasibility studies,

the construction and testing of the NPS AUV I radio-controlled model vehicle, the

construction of the AUV II vehicle, and its ongoing testing and development. [Refs. 5, 6, 7]

A. THE NPS AUV TI VEHICLE

1. Vehicle Characteristics

The basic layout of equipment for the AUV 11 vehicle is illustrated in Figure 2-1.

The vehicle design has been detailed by Good [Ref. 8]. The main vehicle body is

constructed as an aluminum box with a beam of 16 inches, a height of 10 inches, and a

length of 72 inches. The nose cone is constructed of fiberglass and extends the overall

vehicle length to 92 inches. The vehicle uses fixed ballast and displaces approximately 390

pounds. Vehicle control is provided by eight independently driven control surfaces, four

tunnel thrusters, and two main drive motors. The counter-rotating 24 volt DC drive motors

power four-inch propellers and provide one-eighth horsepower each, driving the AUV at a

maximum speed of about two knots (3 feet per second). The control surfaces provide a high

degree of maneuverability, with a minimum turning diameter of approximately 20 ft., less

than three ship lengths. All of the installed systems are powered by lead-acid gel batteries

capable of providing power for up to two and one-half hours.

The control and guidance software processes run on a GESPAC MPU 20-IF processor

with a Motorola 68020 CPU and 68881 math coprocessor running at 16 MHz. The system

has 2.5 Mb of RAM and runs the OS-9 multi-tasking operating system. Input and output

5

between the CPU and the installed systems is routed through two GESDAC-2B 8-channel 12 bit

Digital-to-Analog/Analog-to-Digital (DA/AD) converter cards and a GESPIA-3A parallel

interface board. Serial communications with external systems is achieved via a 2400 bps modemn.

The navigation system sensor suite includes a flux gate compass and directional gyroscope, a

vertical gyroscope system, and a three axis rate gyroscope system with translational

accelerometers. A paddlewheel speed sensor is installed in the nose, along with the four sonar

transducers.

BatteryS~Battery U3]

Sonar transducers Tunnel thrusters Drive motors

i4

STDE VIEW

Figure 2-1. NPS AUV 11 Vehicle Component Layout.

6

2. Software Hierarchy

A block diagram illustrating the interaction of systems and processes is given in

Figure 2-2 [Ref. 9]. The dataflow diagram in Figure 2-3 represents the software

instantiation of the processes shown in Figure 2-2. The individual data items are further

described in the Data Dictionary located in Appendix A. The mission plan and the

particular environmental database for the operating area are downloaded to the AUV from

the mission support system, running on a GRIDCASE 386 laptop computer, via the

modem. Referring now to Figure 2-2. the mission executor oversees the mission exectti:n

by providing geographic waypoints and tasks to the guidance system. The guidance system

provides desired vehicle postures, (x, y, z, 0), as heading, speed, and depth commands to

the autopilot system. The autopilot, updated by the navigation system, controls vehicle

systems to achieve the desired postures. Vehicle systems are monitored for possible

problems, such as the loss of a control servo, that might necessitate mission replanning.

The sonar systems provide range data that are used to detect obstacles and to

develop obstacle features. The pattern recognition system attempts to match obstacle

features with known obstacles in the database in order to provide position updates to the

navigation system. Those obstacles that are not found in the database are added to the

model, and the obstacle avoidance decision maker is signalled to take possible evasive

measures. Details of the sonar processes are discussed in Chapter V. Additionally, the

mission replanner is signalled to develop a new path utilizing the updated environmental

database model. All of the processes running on the GESPAC are coded in C.

7

Maneuvers

Geographic Waypoints
Obstacle and Task Data

Avoidance
Decision
Maker

Guidance System
Patter (x,y,zlt)

Recognition LOS
Cross Track

No Cubic Spiral

Heading
Spee
Depth
Mode
Commands

Navigation Autopilot
System Systems
(X'y'z)

Vehicle
Soas - Speed, GyoVehicle Condition
SonrsDepth Acs.Systems Monitoring

Sensors

Figure 2-2. NPS AUV 11 System Block Diagram.

V)

LU wi
uv) av)
ZUj

V, 2v)
wi 0 E e) V)Z =) o w z u< CY V) <
Ul 4A en
ce >

-JZ
Z LJ
WOR OC)

ce .j p
u z z ILI

WE, OS2 00
uv)

V)

F- uR
W.
w

W7.j uw
< >Ev)

LLI Lr,

V)

u < 2
zg

C)R5 rA w
:D m -j

u
Z",

LLI
op2w V)w

FYI I Z
ce (An 0
0 Via

tR V)
LU

Lu .j
u u V)

LU <0 Con C4 <
z im ca 86 <<- 4 n zeo 0 w " < 0LU zvi<z020 4w uj

>0 zdz : :gI LLI Cr.-Z=40

9

B. RELATED WORK

1. Sonar Range Finding

There are a few research reports on linear fitting on radial range data from ultrasonic

sensors in autonomous land vehicle control. Crowley proposed the recursive linear fitting

algorithm to find a linear segment among radial data [Ref. 10]. Drumheller proposed an

iterative endpoint fit for the same purpose [Ref. 11]. Several reports stress the uncertainty

and ambiguity of sonar range data [Refs. 12, 13, 14]. The method of range data fitting

detailed in Chapter IV was tested on the autonomous mobile robot Yamabico- I I which wa.

developed at the University of California at Santa Barbara and at the Naval Postgraduate

School (NPS) by Kanayama [Ref. 15].

2. AUV Sonar Research

One other AUV project has utilized a similar sonar system, and used range data

slope information provided by the sensors to assess targets [Ref. 16]. Most work in this area

has utilized high resolution sector-scanning, or multi-beam type sonars and image

processing algorithms for obstacle recognition [Refs. 17, 18] and position estimation [Ref.

19].

10

III. ULTRASONIC TRANSDUCER PROPERTIES

AND INSTALLATION

A. DATASONICS PSA-900 PROGRAMMABLE SONAR ALTIMETER

1. Physical and Electrical Characteristics

The ultrasonic transducer chosen for use on the NPS AUV project is the PSA-900

Programmable Sonar Altimeter manufactured by Datasonics, Inc. Each transducer system

consists of a transducer head, a microprocessor-based control system, and associated

connecting cables. Specifications for the PSA-900 are listed in Table 1. Each transducer

head measures 2.25 inches in diameter, and I to 2 inches in length.

TABLE 1-1. DATASONICS PSA-900 SPECIFICATIONS

Operating Frequency: 175/200/223 kHz (fixed)

Beam Pattern: 100, conical

Pulse Length: 350 ltsecs

Repetition Rate: User-selectable (10/1 / 0.1 pps)

Range: User-selectable (30 / 300 meters)

Resolution: 1 cm @ 30 m range / 10 cm @ 300 m range

Accuracy: ± 0.25% of full scale range

Range Output: 0 - 10 v DC, proportional to full scale range

Power Requirement: 15 - 28 v @ 100 mA DC

[Ref. 20]

11

2. Theory of Operation

A sonar operates by emitting acoustic energy at a specified frequency and duration.

Sonar range is determined by timing the sound pulse as it travels from the transducer,

strikes an object, and then returns to the transducer. If the speed of sound through the water

(Cs) is known, then the range (d) can be determined from the following formula:

(Cs± ACs) (t± At)d=2 (Eq 3.)

The nominal speed of sound (Cs) in salt water with salinity of 3 5%c is 1500 meters per sec-

ond. The AC S factor represents changes in sound velocity due to environmental factors

such as temperature, pressure, salinity and depth. Of these factors, temperature change con-

tributes the most to sound velocity change, with as much as a five percent net increase or

decrease in sound velocity. To compensate for temperature related changes in sound veloc-

ity, the PSA-900 includes a temperature sensor that enables it to make automatic

adjustments based on actual temperature readings.The At factor in (Eq 3.1) is the error fac-

tor in determining the actual time elapsed since the sound pulse was generated and is

referred to as jitter. For the PSA-900 sonar this jitter error can be as small as 5 microsec-

onds, or approximately 0.4 cm total distance [Ref. 20].

The ability of a sonar to detect an echo is determined by the initial pulse strength,

the size and type of the target, the distance to the target, and other factors related to noise.

Expressed in terms of the detection threshold (DT), or the ability of the sonar to just detect

a target, the active sonar equation is

DT = SL-2TL+TS- (NL-DI) (Eq 3.2)

Here, SL is the signal level of the original pulse, 2TL is the two-way transmission path loss,

NL is the background noise, and DI is the directivity index of the receiver. All terms are

expressed in units of decibels relative to the standard reference intensity of a 1 g Pa plane

12

wave. The transmission loss (TL) is due to spherical spreading of the sound energy and ab-

sorption of sound energy by particles suspended in the water. For the active sonar this is

expressed as

TL = 20log2r + 2otr (Eq 3.3)

where (x is the attenuation coefficient of sound in water at the frequency in use and r is the

length of the transmission path [Ref. 21, pp. 19-23, 110-111]. With the AUV operating in

the swimming pool environment, the noise term (NL) can be disregarded. To compensate

for the transmission loss expressed in (Eq 3.3), the PSA-900 utilizes a time varying gain

(TVG) amplifier to enhance signal detection capability. This TVG circuitry increases the

gain of the receiver amplifier as a function of time to ensure that weak echoes are detected

[Ref. 20].

3. Side Lobe Effects

The PSA-900 transducer is a circular plane type and produces a main acoustic beam

lobe that extends approximately 15 degrees around the centerline, producing a circular

pattern. Additionally, the transducer produces significant side lobes at approximately 25

and 50 degrees around the centerline. Any objects in the area of the side lobes can produce

echoes as though the object were along the centerline of the sonar. These false returns can

produce erroneous results unless corrected or eliminated.

Since it is impossible to alter the physical characteristics of the sonar beam, the

method of attempting to eliminate the side lobe returns focused on the design of a shield to

be placed on each transducer. The shield is in the form of a conic section, measuring 2.5 in.

in length, with an angle of 50 on either side of the centerline. This shield deflects the initial

side lobe pattern and blocks sonar returns outside of 5' of the sonar's extended centerline.

Figure 3-1 illustrates the effect of the shield.

13

Shield
5° , 5.2 m

5.0
5. m

Transducer 0 30 meters

Figure 3-1. 2-D Vieci of the Shielded Sonar Beam.

4. Interference Problems

Preliminary investigations using these sonars revealed that simultaneous operation

of two sonar systems, both operating in a self-keying mode with different frequencies,

could result in interference and erroneous range readings. Previous tests with both systems

keyed simultaneously via the external keying signal input showed that mutual interference

should not be a problem [Ref. 22, pp. 28-33]. Post-mission data analysis of tests conducted

with two sonars, mounted orthogonally in the AUV's nose and keyed simultaneously,

revealed no evidence of mutual interference.

5. Sonar Board Averaging

The PSA-900 processor maintains a sliding window average consisting of the last

four ranges. This average is used to determine the validity of range signals, with signals

differing from the average by more than 10% of the maximum selected range (3 meters)

considered to be in error. Due to this on-board averaging, when a different sonar transducer

is selected for use with the same board, a number of pings must be conducted to "wash out"

the effects of the previous average. Test results revealed that a minimum of 15 pings must

14

be generated before the new average settled at the correct range (Figure 3-2). With a ping

rate of 10 Hz, this reduces the effective data acquisition rate to less than 0.3 Hz for each

transducer operating on the same board. While this rate is acceptable for some missions, it

is too low for purposes of control or obstacle avoidance.

6. Noise Filtering

Initial tests conducted with the sonars installed in the AUV showed that the signals

provided by the sonars contained a noticeable amount of spurious noise. Examination of a

number of sets of test data led to the observation that the noise tended to present itself as a

transient spike indicating a range shorter than the actual range. Further, each spike's first

transition duration (rise time) was very short, with the first data point in the spike being 15

- 20 units less than the previous valid data point. The -,pikes average duration was I second.

At a 10 Hz data rate, this means that ten consecutive data points may be invalid. An

enlarged section of an unfiltered data set from the bottom sonar is seen in Figure 3-3.

The analysis of the noise present in the signals led to the development of a digital filter

that screens out points more than 15 units away from the current average value. Points that

pass this screen are included in the updated moving average, consisting of the ten most

recent valid points. In order to prevent the loss of possibly valid data representing a

significant change in a feature's topography, points screened out are saved in a b'-ffer. If a

sequence of ten points are screened out, then those ten points are used to develop a new

average, and the buffer is cleared. When dealing with the forward sonar, the screeninT must

allow for changes in the range signal due to the forward motion of the AUV at its current

speed. Typically, this results in a screen of 25 - 30 units, rather than the 20 used for the side

and bottom sonars. The data set seen in Figure 3-3 is shown in Figure 3-4 after filtering.

15

R*
a ,

g ,*n*

e ,

1500 *

100* _

-500

S. *..
'.,o -..- -

2 15 3 10 3 15

Time (secs) -- m

Figurec 3-2. Illustration of Sonar Board Averaging. One sonar board has been
switched between two transducers every 2 seconds (20 pings). Ranges for one
head are shown by dots, ranges for the second head are shown with asterisks.

16

Valid returns

1 1200 -

x x
x Xx

X x
x xX

xx
xx XX

x 8

x x
x ~ x

xx

Noise

x

55 60

Time (sees) u

Figure 3-3. Unfiltered Range Data Set. Data from the bottom so-
nar. Range is in interface units, where I unit = 0.023 ft.

17

R
a

n Filtered data (x's)
g 1200
e 1200

eue

1100 1100.

55 60

Time (secs) -.

Figure 3-4. Filtered Range Data Set. Filtered values are shown
with "x's", original data (dots) from Figure 3-3 is also shown for
comparison. Range is in interface units, where 1 unit = 0.023 ft.

B. SONAR INSTALLATION

1. AUV Nose Mount

The four sonar transducers, with associated cones, currently installed in the AUV II

are affixed to an aluminum mounting bracket, so that they are mutually orthogonal. There

is a sonar oriented directly forward, directly downward, to the left, and to the right of the

18

AIV body. Since the fiberclas, nose is acousticallyv opaCLle for the sona fr frequencit.' in Lc.

holes were cut in the nose to expose the openings of the shield cones. A thin plastic sheet.

acoustically transparent. was placed over the openings to maintain the hydrodynamic prop-

erties of the nose. The watertight cables for the sonars are connected to a watertight

connection. mounted on the forward bulkhead of the AUV. which connects to the sonar pro-

cessing boards. The sonar mount is shown in Figure 3-5.

Figure 3-5. AUV II Sonar Installation. Shield has been removed from forward

sonar to show transducer. Watertight connection is at upper left.

19

2. Computer Interface

Due to power supply limitations, there are currently two sonar processing boards

installed in the AUV II. The four transducers are connected to the two boards through a set

of four microswitches, so that one board serves two transducers (Figure 3-6). Each

microswitch is software controlled to enable the selection of a pair of sonar transducers for

use. The switch interface to the CPU is via the GESPIA-3A parallel interface board.

Additionally, the external keying signal is provided to each sonar board via the GESPIA-

3A. To effect a controlled sonar ping, the appropriate pair of transducers are selected for

connection to the sonar boards, and then the boards are keyed via the parallel interface. This

simultaneous keying precludes the crosstalk problems discussed earlier in this chapter.

The analog range signal (0-10 v DC) provided by the sonar processor is interfaced

to the CPU via the GESDAC-2B analog-to-digital converter board. This interface provides

a resolution of 4096 units, with programmable gain control. The sonar installation uses

unity gain, with full scale representing the maximum selected range (4096 units = 10 volts

= 30 meters).

20

68020
CPU

I~BUS
GESPIA External Trigger

3A

GESBUS

GESDAC2 Analog Range Signal PSA-900

Analog Range Signal PS90

Fiueo-.Soanomuerrorlc iarm

Lin21

IV. EXTRACTION OF LINEAR FEATURES

OF OBSTACLES

Regression analysis is used in many applications to find linear approximations for sets

of discrete data points. In the case of underwater obstacles and the AUV sonar, data points

generated by sonar returns from obstacles may be used to generate linear features of the ob-

stacles that can be used to describe the obstacles in terms of the environmental model. This

linear feature extraction enables the system to perform pattern matching with the environ-

mental database to allow navigational position updating, or, in the case of a previously

unknown obstacle, the obstacle can be added to the environmental database.

This section discusses the application of the least squares fit method to sonar data and

the extraction of linear features of obstacles. These linear features are then described in

terms of the AUV's world environmental model to allow pattern matching or database up-

date. [Ref. 23]

A. LEAST SQUARES FIT METHOD

1. Coordinate Transformation

In determining global coordinates for the data points, we use the AUV's dead

reckoning (DR) position (x,, y,) and heading orientation, 4f, with respect to the global

system, and the sensor's orientation with respect to the AUV body (Figure 4-1). For the side

and forward sonars, the effects due to roll and pitch are negligible and can be ignored due

to the inherent stability of the AUV in these axes. Similarly, the bottom sonar range is

affected only by the pitch angle, with effects due to roll being minimal, and the range being

independent of heading. Note that the heading angle, xV, is measured in a clockwise fashion

22

x

Yxw

0 t________________________

0 0
y

Figure 4-1. World Coordinate Conversion. Diagram illustrates parameters for
a range return from the left sonar.

23

around the z axis by a gyroscope. The DR position is determined by

x' =x S + At x u x cos (XV) (Eq 4.1)

Y's= Ys + At x u x sin (4) (Eq 4.2)

where At = 0.1 secs and u is an estimate of the velocity along the vehicle's longitudinal

velocity. This estimate for the velocity is a primary source of DR error. Coordinates for the

data point (p., P.) from the left sonar are generated as follows:

PX = XS + range x cos (x- nt/2) (Eq 4.3)

PV = ys+ range x sin (v - /2). (Eq 4.4)

2. Linear Regression Principles

We first discuss how to extract a linear feature from a set of point data by the least

squares fit method. The linear feature is the simplest one among all the abstract geometric

features, and is easily obtained by range sensors from an orthogonal world. Suppose a set

R of positions for an envelope of an object in a plane is given from a range sensor.

R = ((x i , yi)li=],....n) . (Eq4.5)

The moments mJk of R are defined as

n

mk = xyk (O<_j, k<_2, andj+k___2)
i (Eq 4.6)

Notice that moo = n The centroid C of R is given by

C = (mi O, M0 1 (4ax , AY) .

Moo Moo (Eq 4.7)

The secondary moments around the centroid are given by

n 2

M (xi _Ax) 2 (Eq4.8)20-- m20 o

24

n)2

11 ---£ ji) mA) (Eq 4.9)
i=1I

n 2

M0 2 - E (i =01 (Eq 4.10)
i=1 0

We adopt the parametric representation (r, c) of a line with constants r and a. If a point

p= (x, y) satisfies an equation

r = xcosa+ysinox (-n/2< tit/2) (Eq411)

then the point p is on a line L whose normal has an orientation a and whose distance from

the origin is r (Figure 4-2). This method has an advantage in expressing lines that are per-

pendicular to the X axis. The point-slope method, where y = mx + b, is incapable of

representing such a case (m = -, b is undefined). The residual of point pi = (xi, yi) and

the line L = (r, a) is xicos + ysina - r . Therefore, the sum of the squares of all re-

siduals is

n

S = E (r-xicosax-yisina) (Eq4.12)
i= 1

The line which best fits the set of points is supposed to minimize S. Thus the optimum line

(r,a) must satisfy

as- a 0 . (Eq 4.13)

25

Y

residual

P = (xi,Yi)

r
L

Origin X

Figure 4-2. Representation of a Line. The distance from
the point p to L is the residuaL

Thus,

-= 21 (r-xicoscx-yisin°)

i=I

= 2 r 1- (xi)cos a- (Yi sina

= 2 (rmoo - m 10 cosa - mol sina)

=0

and

"10 M 01

r - cosa + - sina = icox+ g sinoa (Eq 4.15)moo moo

where r may be negative. Substituting r in (Eq 4.12) by (Eq 4.15),

2
S ((x i -4 x) cosa + (Y i y) sina) (Eq4.16)

26

Finally,

as n

n

2 ((Yi - RY)2 (Xi _ 1't) 2) sinacosOt +
i=1

n

2 ,(X i - 4X) (Yi - 9ty) (Cos20 a- sin 2a)

(Eq 4.17)

= (M 02 - M 20) sin2o(+ 2M 1 cos2Ox

= 0 .

Therefore

arctan2 (-2M11' M02 - M20)
Cf= -(Eq 4,18)0 2

The solutions for the line parameters generated by a least squares fit are given by (Eq 4.15)

and (Eq 4.18).

The equivalent ellipse of inertia for the original n points is an ellipse which has the

same moments around the center of gravity. Mmajor and Mminor are moments about the

major and minor axes respectively (Figure 4-3),

Mmajor = (M2 0 + M02) /2 - (M 0 2 - M 2 0 /4 +M 1 (Eq 4.19)

Mminor = (M 20 + M02) /2 + (M 0 2 -M 20) /4+M 2 (Eq4.20)

27

Y Mnor

axis

Origin X

Figure 4-3. The Equivalent Ellipse of Inertia. De-
termined for the set of points R, represented by the
line L.

The diameters dmajor on the major axis and dminor on the minor axis of the equivalent el-

lipse are

dminor = 4M /m o (Eq 4.21)

dmajor = 4A'minor . (Eq 4.22)

We define p, the ellipse thinness ratio, to be the ratio of dminor and dmajor:

dminor

= dmajor (Eq4.23)

A small p means a thin ellipse; as p increases toward 1, the ellipse degrades to a circle rep-

resenting a thick line or "blob" of points. We will use p as an additional measure of the

linearity of a set of points.

The residual of a point pi = (xi, yi) is

= (li'x) Cos(X+ (gY-yi) sina (Eq4.24)

28

Therefore, the projection, p'i, of the point pi onto the major axis is

Pi = (xi + 8icos (, yi + 8isin) (Eq4.25)

We will use p', and p', as estimates of the endpoints of the line segment L obtained from

the point set R by the least squares algorithm. In a sequential fitting process such as that

employed on the AUV, only the first point, p,, need be stored during processing. Not only

is the equation of the line important, but the estimation of both endpoints is also valuable

information for sensor based navigation.

B. BEGINNING A NEW LINE SEGMENT

While the least squares fit method provides an appropriate estimate for a line passing

through a set of points, it does not provide a method of determining when to terminate one

line segment and when to begin another; which is the key to this method. This decision is

critical for determining the best linearity fit for a set of range data. For example, if we

receive a set of points representing two perpendicular surfaces, the least squares fit method

will generate a single line that accommodates all of the points. This fails to provide an

accurate depiction of the surfaces' inherent linear features. We consider a set of range data

points representing a corner of the swimming pool. This set of data with an unterminated

line segment fit to it is seen in Figure 4-4. A line segment terminated with the described

method is seen in Figure 4-5.

1. Test for Residuals

To determine when to end a line segment we perform two tests on the current line.

The first test checks the goodness of the linearity fit for the most recent point,

(x, , 1, yi + 1) . If the point satisfies

5i + I < nax(c l x a,c2) (Eq 4.26)

where cl and c2 are positive constants (typically, cl = 3.0 and c2 = 0.4 ft.) and the standard

29

deviation, y, is

(T = Mr.inor/ (i- 2) (Eq4.27)

then the point can be included in the current line segment.

ii

40 Sonar returns I
30

20 Unterminated line)
- 10seg

ent

10 20 30 40

Figure 4-4. Unterminated Line Fit. Sonar returns from a corner
of the swimming pool with an unterminated line fit to the points.
Axis units in ft.

2. Test for Ellipse Thinness

The second test uses the ellipse information discussed above; if the thinness ratio

for the line is smaller than the third constant, c3, then the set of points is still acceptably

thin. We have modified the method of testing the thinness ratio from that used in [Ref. 151

by scaling the thinness criteria, c3, based on the length of the line. If c3 is allowed to remain

30

40

30
Properly
terminated
line segments

20

-10

10 20 30 40

Figure 4-5. Terminated Line Segment. Least squares fit line seg-
ments terminated by applying tests described in text. Here, cl =
3.0, c2 = 0.4, c3 = 0.1 initially. Axis units in ft.

constant, then the ellipse thinness remains constant; however, as the line grows longer, this

means that the acceptable width of the ellipse also grows. Using another actual data set, we

can see in Figure 4-6 that the line is skewed slightly with respect to the predominant linear

feature. This is due to the points representing the swimmer "pulling" the line down because

they still fell within the thinness ratio. For larger scale features, this means that a change in

a feature will not be recognized until it has become large enough to fall outside of the thin-

ness criteria. As an example, a line segment that is 100 feet long, developed using an ellipse

thinness ratio of 0.1, will have a possible width of 10 feet. This potential width determines

the necessary minimum size for another feature to force a termination of the line segment

based on a constant thinness ratio.

31

To preclude this problem, we scale the thinness ratio as a function of length. The

starting thinness ratio is determined as the desired accuracy of the smallest feature in the

environment, with two feet being our chosen minimum usable size. Due to the physical

dimensions of the swimming pool, the maximum length is set at 120 feet. At the small end

of the spectrum, we have fixed the thinness ratio at 0.1, or 2.4 inches for the smallest

features, while at the other extreme, a thickness of 1.2 feet is acceptable, which requires a

ratio of 0.01. At intermediate lengths, the thinness ratio is determined by

p = 0.1 - (0.09 - (120.0- length) 0.1015 length1311.11) = 01 5-1311.11 (q .8

With this adaptive ratio, the feature in Figure 4-7 is depicted in a much more realistic fash-

ion, with the line segments falling close to the actual walls, and the swimmer being

outlined.

If any point fails either of the two tests described, it is placed into a buffer which is

used to initiate the next line segment. This method reduces the deleterious effects of noise,

while maintaining the history of a possible feature change worth noting. When a line

segment is terminated, the length is checked so that only those segments longer than a

specified minimum (typically 2 ft.) will be processed by the pattern matcher.

C. DESCRIPTION OF FEATURES IN TERMS OF AUV WORLD MODEL

1. The Environmental Model

Before obstacle recognition and positional updating can take place, a suitable

environmental model must be defined. This environment model must facilitate the three

functions of path planning, positional identification, and model updating. All three of these

functions require the expression of the environment in some type of numerical form.

Therefore, linear features are defined by a Cartesian coordinate system where some

predefined point serves as the origin (see Figure 4-1 for a depiction of the pool's coordinate

32

system). In this manner, all features may be expressed in terms of their x-, y-, and z-

coordinates where the linking of three or more vertices defines a polyhedron.

Line segment/

Swimmer

50

50 100

Figure 4-6. Constant Ellipse Thinness Ratio. A constant value
(c3) allows the actual width of the ellipse to grow as the line
lengthens, producing a poor fit to the linear feature. Here cl =
3.0, c2 = 0.3, c3 = 0.1. Axis units in feet.

The structure used to link the points of a polyhedron is a linked list. This data

structure is allocated in memory containing the x-, y-, and z-coordinates of each point.

Pointers are then used to specify which vertices are connected to form the surfaces of a

polyhedron. Additionally, the line parameters ,r, cx) defining each surface are stored in the

list, with r being the positive distance from the origin to the line, and (x being measured in

a clockwise fashion similar to the AUV's heading Nf.

33

Line segments

50

50 100

Figure 4-7. Adaptive Ellipse Thinness Ratio. An adaptive ratio
(Eq 4.28) maintains a more linear fit to the data points than using
a constant ratio such as in Figure 5, cl = 3.0 and c2 = 0.3. Axis
units in ft.

2. Position Identification and Updating

By using the parametric representation of a line (r, a), the process of matching is a

simple matter of comparing the generated parameters with the parameters stored in the

environmental model. The match criteria for r and a are designed to account for all known

errors in generating the line segment. There are three primary errors: (1) positional

uncertainty or navigational error, (2) inaccuracies due to the assumption that all echoes are

along the sonar's centerline (cosine effect), and (3) inherent sonar range error. We currently

use an error of 3 ft. in r, and 0.34 radians (200) in ax.

34

If a generated line segment matches a known model feature with or without an error,

then it is possible to identify the AUV's position more precisely and to update the position

based on the actual range to the feature, if an error exists. Utilizing the range to the feature,

the known geometry of the sonar beam, and the angle of the sonar relative to the feature,

an accurate normal distance can be computed. A single sonar is normally capable of

updating the AUV's position in one dimension at any given time. In the case of the left

sonar, with the recognized feature parallel to the x-axis, the AUV's position along the

global y-axis would be determined as follows,
YAUV = rfeature - range x sin (a tue) " (Eq4.29)

If the sonar is in contact with a feature that is parallel to the y-axis, then the AUV's along

the x-axis would be determined as follows,

XAU VI = rfeature - range x cos (cXfeature)" (Eq4.30)

3. Model Updating

If no match is found in the environmental model, then we assume that the line

segment was a result of a previously unknown feature, or obstacle. The parameters for this

feature, developed as a planar surface, are stored as a new feature in the environmental

model. This information may be needed for the path planning module, particularly if the

new feature represents an obstacle to the currently planned path. Any new features that are

added to the model will also be displayed graphically during post-mission data analysis.

The line segment parameters (r,) are stored with the feature for future pattern matching;

hence, a previously unknown obstacle becomes a known environmental feature.

The information generated by the least squares method is in two dimensions only,

while the AUV is operating in three dimensions. For the forward and side sonars, the two

dimensions used are the global x and y coordinates, while for the bottom sonar the z

35

information is treated as 'y' data for use with the algorithm. Features seen by the side sonars

are in the vertical plane, while those seen by the bottom sonar are in the horizontal plane.

Figure 4-8 shows the acoustic signal pattern of each transducer as a spherical

section. A valid range data point could be produced by any reflecting surface patches of an

object on this spherical surface. We make the assumption that the range return was from

the beam's centerline. While it is possible to correct this range once the orientation of the

feature is known, we do not want to preclude the possibility that a previously unknown

obstacle of unknown orientation may be producing the return. The errors induced in making

this assumption will be absorbed by the least squares algorithm to some extent, with the

remaining error being accounted for in the matching process.

If a line segment is not successfully matched to a known surface in the

environmental model, then we must process the segment for further use. Once the

endpoints are determined, a surface with length equal to the length of the line segment, and

width proportional to the range from the AUV to the endpoint at the time it was obtained

(Figure 4-9), is generated. The width is determined as

d = rsin (50) = rx0.087. (Eq4.31)

At the selected maximum range of 30 meters (98.25 ft.), d = 2.6m, (7.86 ft.). Choosing

this width accounts for the fact that the return could have come from any point on the sur-

face of the spherical section created by the signal. Thus, a 3-D surface is produced from 2-

D information. The generated polygon is stored as a set of nodes in the environmental mod-

el for used in future path planning and post-mission data visualization. At this time, we do

not provide for the retraction or resizing of surfaces based on subsequently obtained infor-

mation.

36

~range

Figure 4-8. Cross-sectional View of a Sonar's Beam Pattern. The dis-
tance d and the error e are proportional to the range. The curvature
of the spherical surface is exaggerated for illustration purposes.

B

C

d

D

Figure 4-9. Projection of Corner Points for 3-D Surface. Corner points
generated from the line L. The distance d is determined by (Eq 4.31).

37

V. SOFTWARE PROCESSES FOR REAL-

TIME OBSTACLE AVOIDANCE

The sonar system installed in the AUV 11 vehicle plays an integral role in the execution

of planned missions. The system interfaces with several other processes, as illustrated by

the current working version of the dataflow diagrams for the AUV software (Figure 5-1 and

Figure 2-3). The sections below describe the various sonar software processes and the

interfaces to the other processes seen in Figure 5-1. The interface with the environmental

database was discussed in Section C of Chapter IV. The actual code associated with thc

sonar processes is found in Appendix B.

A. SONAR SOFTWARE PROCESSES

The process READ SONAR DATA (5.1) in Figure 5-1 obtains the current range value

for the appropriate sonar by reading the proper channel of the GESPAC-2b DA/AD

converter. This raw data is then used to update the moving average in the FILTER DATA

process (5.2), as described in Section A.6 of Chapter III. The obstaclealert flag will also

be set here, as described in the next section. The new average range is then used by the

UPDATE LINE SEGMENT (5.3) process to develop a line segment. If the point is valid

for the current line segment, then the line parameters are updated and compared to the

known obstacles by the process MATCH LINE TO MODEL (5.4). If no match is found,

then the newobstacle flag is set.

If the new data point causes a termination of the current line segment based on the tests

described in Section B of Chapter IV, and the newobstacle flag is set, then a new obstacle

is developed and added to the environmental database as described in Section C.3 of

Chapter IV by the ADD NEW OBSTACLE process (5.7). If the line segment is terminated,

then all variables are cleared and a new line will start with the next incoming range data

point. Once the match process (5.4) is complete, a position update (see Section C.2 of

38

IM 00
<

LCz
L" z

0
V)

0
ce

ILILU

cl

GO

0 LU

0

z 0 z 0

0 < 2

z V) .7.4 OR

0
V)

t
LU

U -1 z
u

< g

u wi 0 in zv)

0< d
16 >z
0cn Z

R COA on d0 <><

z

39

Chapter IV) can be performed if the obstacle was found in the database, i.e. the newobsta-

cle flag is not set.

B. INTERFACE WITH CONTROL GUIDANCE SYSTEM

There are two occasions when information obtained by the sonar might dictate motion

control for the AUV. The first instance is the most critical, it is simple obstacle avoidance.

The second instance arises when it becomes desirable or necessary to map the extent of a

previously unknown obstacle; this case is discussed in the next section. Sonar range

information that indicates a potential collision in any direction will be recognized by the

FILTER DATA process (5.2) in Figure 5-1.

A minimum safety range for each direction from the AUV (forward, left, right, down)

is stored as part of the sonar range data structure. As the latest range reading is filtered, the

minimum safety range is compared to the average actual range for that direction. If any of

the actual ranges fall below the minimum safety range, the obstacle-alert flag bit is set for

that sonar/direction. This flag is passed to the AVOID OBSTACLES process (8) in Figure

5-1.

The AVOID OBSTACLES process determines which course of action to follow if any

of the flag bits are set. A heading change, a depth change, a full stop, or any combination of

these changes may be necessary. The various options are shown in Table 5-1. The currently

installed software generates an "emergency posture" that forces a turn or depth change to

avoid areas flagged as containing threatening obstacles. While operating in the NPS swim-

ming pool environment, all turns are ninety degrees. Since the AUV's dynamics will carry

it closer to an obstacle during the turn, a logical lockout system prevents the sonar ranges

from generating any more alerts until the AUV is within 200 of the new heading. If there

are no known lateral obstacles, an obstacle ahead of the AUV could be avoided by a turn

to the left or to the right. The default in this case is a right turn.

40

TABLE 5-1. AUV OBSTACLE AVOIDANCE MANUEVERS

Obstacle Alert Flag Turn Depth Change

(Fwd, right, left, bottom)

OX XO

oxxi --- ascend

1101 left ascend

1100 left ---

1011 right ascend

1010 right ---

111x stop (ascend)

0 = no obstacle 1 = obstacle X = 0 or 1

C. MOTION ALGORITHM FOR OBSTACLE MAPPING

The most reliable method of mapping an underwater feature is to control the motion

of the vehicle so that the range to the feature remains within the optimum range of the

sensor, but does not present a collision danger. As described in Chapter IV, the linear

feature extraction method provides the best resolution at short ranges; therefore, the

minimum safety range becomes the determining factor in choosing a mapping distance.

Mapping of the bottom topography with the down-looking sonar is much simpler than

maintaining a fixed distance laterally from a feature. As noted earlier, the heading of the

AUV has no effect on the feature extraction of targets below the AUV. Due to the AUV's

inherent stability, pitch and roll will affect the bottom sensor only in extreme cases. A

simple terrain following altitude controller has been implemented and tested in the NPS

41

swimming pool. The control law used was

dels = krange (rangecom - range) + kthetaO + kqq (Eq 5.1)

where dels is the commanded dive plane angle, rangecom is the desired altitude above the

bottom, range is the actual sonar range to the bottom, 0 is the pitch angle, and q is the pitch

rate.

Mapping of lateral features with the left or right sonars is complicated by the need to

control heading while attempting to maintain mapping range to the feature. For this reason,

a simpler scheme involves generating intermediate waypoints and allowing the guidance

and control processes to maneuver the AUV. Care must be taken to ensure that a large

lateral step is broken down into smaller steps to ensure that the sonar in contact caln

maintain contact during the maneuver. This means heading changes of no more than five

degrees relative to the surface of the feature to obtain the highest resolution. The desired

feature resolution and mission task will ultimately dictate the magnitude of these turns.

D. INTERFACE WITH ONBOARD MISSION REPLANNER

At any time that an obstacle is detected, either as a collision danger, or as a previously

unknown feature, the newobstacle flag is set. This flag, in conjunction with the

obstacle_alert flag, is used to signal the mission executor. One of the roles of the mission

executor is to determine from these flags if path replanning is necessary, or if obstacle

mapping may also be required. In order for the mission replanner to accurately assess the

path to the goal, it must have a complete environmental database. If an emergency turn was

made due to an obstacle ahead of the AUV, it may be necessary to generate obstacle

mapping waypoints to determine the extent of the obstacle. This area of research is

addressed by Wilkinson [Ref. 24], and is a matter of ongoing research.

42

VI. EXPERIMENTAL RESULTS

A. EXPERIMENTAL RESULTS OF MODEL MATCHING

Satisfactory tests of the model matching algorithm discussed in Chapter IV were

conducted with the AUV operating in the swimming pool. The range data points shown in

Figure 6-1 are from one such test. Again, the errors previously discussed are manifested in

an imperfect match to the pool walls. However, by accounting for these known errors in the

matching, matches between generated line segments and the environmental model are

possible.

Figure 6-1. Sample Range Data Set. Range data set used for by the model
matching algorithm, taken during a test in the NPS swimming pool. Bold
rectangle represents pool walls.

43

Using an error of 3 ft. in r, and 0.34 radians (20 degrees) in a, the generated line

segments in Figure 6-2 represented as dashed lines matched features in the model correctly,

with no false matches geniratci.

immuiiiinuumi match no match
Illllit, "lUlll'l f .Juu ~ | l

S

Figure 6-2. Model Matching Results. Line segments fit to the data set
shown in Figure 6-1, with those segments that were identified by the model
matching algorithm shown with dashed lines. Numbers represent element
of model matched, with "s9s" representing no match. Bold rectangle repre-
sents pool walls.

B. REAL-TIME OBSTACLE AVOIDANCE

The software processes used to perform obsiacle avoidance were discussed in Chapter

V. The results of a pool test mission are seen in Figure 6-3. The original preplanned

waypoints for the mission are represented by an "x", the point corresponding to the

minimum safety range is marked with an "0". and the obstacle avoidance waypoint

generated by the AVOID OBSTACLES process is shown with a "W". As demonstrated by

this test, the sonar processes and gross motion control discussed in Chapter V work as

44

designed, with the AUV safely avoiding an obstacle directly ahead and within the minimum

safety range.

C. ALTITUDE CONTROL

The terrain-following altitude controller discussed in Section C of Chapter V was tested

in the NPS pool. Using a filtered signal from the bottom sonar, the controller maintained the

AUV at a height of 3.0 feet from the pool bottom. As illustrated in Figure 6-4, the controller

maintained altitude after the initial dive with an error not exceeding 0.5 ft. The tests, using

the control law from (Eq 5.1), were conducted with krange = 1.1 and ktheta = 3.5 , and

kq = 2.5.

45

NPS Swimming Pool

AUV Track

nx

tx

R
a
n
g 80
e

t
-60

-40 l

-20

20 40 60 80
f I I p

Times (secs)
Figure 6-3. Obstacle Avoidance Test. AUV track is shown in upper box, forward so-
nar range is graphed below. Obstacle within 28 ft. was detected at points marked
with "0", resulting in new waypoints ("W") to replace original track ("x").

46

R
a
n
g
e

(ft) 4.0 Desired depth (3.0 ft)

AO
Initial dive

I I I I

20 40 60 80 Time (secs) -

D 0

e
p 4
t
h 8

(ft)

Figure 6-4. Altitude Controller Performance. AUV depth was commanded to be 3
ft. and was controlled using the bottom sonar. Pool depth profile during mission is
shown in lower graph.

47

VII. SIMULATION AND POST-MISSION 3-D DATA MAPPING

A. AUV MISSION SIMULATOR

1. Overview

The role of simulation in a project such as the AUV II project is very beneficial,

both for testing new processes and for analyzing actual data collected during a test mission.

Some of the benefits of the current simulator include:

* Allows software developers to test and debug new modules without the effort
of a full field test

* Provides visual display of sonar returns
" Provides the ability to develop and observe AUV missions before they are

actually run
* Provides the ability to visualize the results of a mission from the actual data

collected during a test.

The AUV mission simulator is based on the simulator developed by Jurewicz and

detailed in [Ref. 25]. This simulator, running on a Silicon Graphics IRIS workstation,

provides a 3-D graphical presentation of the NPS AUV II as it moves through the NPS

swimming pool, or the Monterey Bay. The simulated AUV is controlled via either mouse

input through the interface screen, or by manipulating the 6-degree-of-freedom Spaceball

input device. Velocities, accelerations, and position changes are calculated using the

control inputs for motor speeds and fin deflections. A detailed hydrodynamic model of the

AUV is used to compute the simulated motion of the vehicle.

2. Sonar Simulation

In order to fully simulate the AUV in the pool environment, a simulation of the

sonar signals was developed using graphics ray tracing techniques. Each sonar transducer

is modeled as a point source for a sound ray, with a single ray emanating from the source

48

in the direction of orientation of the sonar. Since the sonars actually emit acoustic energy

in a cone pattern, six additional rays are simulated to form the outer surfaces of the cone,

spreading out from the source at a five degree angle (see Figure 7-1).

50

End View Side View

Figure 7-1. Simulated Sonar Beam Using Seven
Rays. Seventh ray is in center, along sonar axis.

Each ray is traced in a recursive fashion as it intersects the polygons forming the

pool boundaries. Each point of intersection is stored in an array, and the angle of reflection

is calculated. Each point then becomes a new source, and the next level of reflection points

is calculated. This recursion continues until a level of four reflections is reached. If the total

distance travelled in reaching a point exceeds two times the maximum range of the sonar

(30 m), then that ray is terminated regardless of the level of recursion, since it would arrive

back at the sonar after the next ping started. The ray-tracing code is adapted from an

algorithm found in Glassner [Ref. 26].

49

After all of the points of intersection are determined and stored, the point found to

be closest to the sonar, with a reflecting angle within the sonar's field of view, is

determined. For a point to be closest, the distance that the ray has travelled to that point

added to the Euclidean distance from the point to the sonar, must be smaller than for any

other point. This distance is then divided by two, and a point is projected from the sonar in

the direction of its orientation, since we assume that all sonar returns come from points

along the sonar beam's axis. Any points that were reached by one or more reflections will

appear farther from the sonar than the actual object (see Figure 7-2). This becomes most

pronounced when the sonar is directed toward the vertex of a concave corner.

x

False apparent
range

Reflected
echo

Sonar

Figure 7-2. False Apparent Range Caused by Re-
flection.

B. POST-MISSION REPLAY

All of the actual test missions run in the NPS pool provide a mission data file that is

downloaded from the AUV at the end of each test run. This information is utilized for

parameter analysis and sonar performance evaluation. The replay capability of the original

AUV simulator has also been expanded to accept the data files from actual missions. The

50

data file is loaded onto the graphics workstation where mission replay is selected. Each

control parameter is used to position the control surfaces, and the positional information is

used to determine the AUV's position and orientation for display.

Additionally, the range values for each sonar are projected from the appropriate sonar

location for display. As the AUV moves through the mission replay, the track is displayed,

as well as the actual sonar returns. This capability allows the users to determine if the pre-

mission simulation was accurate, or if the AUV may have reacted to a situation not foreseen

by the testers, as evidenced by an unexpected sonar return or track change. The completed

replay of an actual AUV pool mission is seen in Figure 7-3, with the actual recorded track

and sonar information labelled.

The 3-D surfaces discussed in Chapter IV representing unknown obstacles can be

displayed as well. This capability would have much more significance for a vehicle

operating in open waters, or in an area where the environmental database was sparse. This

capability, although limited by the resolution and number of sensors, may well support

many major missions for AUVs.

51

x

Pool walls

Figure 7-3. Graphical Mission Replay. View of simulated pool from above follow-
ing replay of mission sonar and track data. Apparent errors are due to DR naviga-
tion inaccuracies.

52

VIII. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

This work addressed four primary objectives, as reiterated here:

" How can data from ultrasonic sensors be best utilized to recognize obstacles
during operation of the NPS AUV II?

• What is the optimal configuration for ultrasorlic sensors on the AUV II to
provide obstacle detection and terrain data collection for post-mission
analysis?

* What type of motion algorithm will best provide collision avoidance and
obstacle feature extraction?

• How can sensor data be utilized in post-mission analysis to generate a 3-D
terrain model?

After conducting the development, testing, and evaluation of the various processes

described in this work, we have reached the following conclusions in response to the

questions posed in the objectives:

* The linear feature extraction method presented here, having been initially
developed on a land vehicle in two dimensions [Ref. 15], proved itself robust
enough to provide useful information for an AUV operating in three
dimensions, as well.

• Given the current availability of four sonar systems, the orthogonal mounting
arrangement discussed in Chapter II proved satisfactory for obstacle
avoidance, altitude control, and feature extraction.

* In the swimming pool environment, the processes discussed for obstacle
avoidance and terrain data collection were demonstrated to be satisfactory.

* The extension of an existing graphical simulation to include a mission replay
capability provided a satisfactory tool for analysis of 3-D mission data.

A key factor in the successful development of this work was the availability of a

readily adaptable graphical simulator. The effort involved in conducting pool tests with the

AUV, and competing research requirements, precludes frequent testing of individual

aspects of the vehicle's systems. Access to a dynamic simulator ensured that basic

algorithm development and testing could be done independent of the actual vehicle.

53

The goal of classifying obstacles is currently being pursued by others involved in.the.

NPS AUV research project. Due to the inherent noise in the sensors and the low resolution

of the sonars as currently installed, classification of objects must be limited to those objects

in excess of two feet in size. The calculation of position based on inertial sensing is

currently being developed and should provide more reliable results in the future, as well.

B. RECOMMENDATIONS

The capabilities of NPS AUV II continue to grow as new processes and systems are

developed and installed. In order to enhance the obstacle avoidance capabilities of the

vehicle, the following specific recommendations are provided for future work:

* Provide for the installation of more sonar transducers to provide increased
coverage of vehicle surroundings.

" Eliminate the on-board averaging performed by the current sonar processing
boards.

* Install an accurate inertial system to provide more accurate positioning data.
* Consider providing additional processing capabilities to ensure that the

required control system sampling rates are maintained.
* Develop simulation capabilities ahead of any new functionality that is installed

in the vehicle.

The NPS AUV II project should continue to be a viable research effort for many years,

and these recommendations -re made to ensure that future efforts will be able to build on

this and other current work.

54

APPENDIX A

AUV DATA DICTIONARY

Baseline System (v 1.1)

Symbols for Describing Data

NAME = Description

Description + Description... (denotes aggregate structure "+")

min (Description) max (denotes multiple instances "{ "; if min not specified, assume

empty; if max not specified, assume infinite)

<Description I Description> (denotes mandatory "<>" choice "I")

(Description) (denotes optional item "0")

Predefined Data Names

CHAR = Letters, numbers, space, punctuation

STRING =O(CHAR)239

EMPTY = absence of value

DIGIT= 0..9

DAY = 1 (DIGIT) 2

MONTH =I{DIGIT)2

YEAR = 4(DIGIT)4

DATE = DAY + MONTH + YEAR

INTEGER =1 (DIGIT)

REAL = (DIGIT) +. + (DIGIT)
SECOND=2 (DIGIT) 2

MINUTE = 2(DIGIT)2

HOUR= 2(DIGIT}2

TIME = HOUR + MINUTE + SECOND

55

NOTE: BOLD TYPE NAMES REFER TO current Baseline System DFD

Point_3D =

x = REAL +
y = REAL+
z = REAL

Linear-velocity-3D=
u = REAL +
v = REAL+
W = REAL

Linear-accel_3D=
ujdot= REAL +
v-dot= REAL +
w-dot= REAL

Attitude_3D=
phi = REAL +
theta= REAL +
psi = REAL

Rotational-velocity_3D=
p = REAL +
q = REAL +
r = REAL

Rotational-accel_3D=
pdot= REAL +
q-dot= REAL +
r-dot= REAL

Fin-angle = REAL

Polygon = 3(Point-3D)
Posture

Position = Point_3D +
Velocity = Linear-ve loci tyjD1 +
Acceleration= Linear-accel_3D3 +
Attitude =Attitude_3D +

56

Rotation-vel= Rotational-velocity-3D) +
Rotation-acc= Rotational-accel_3D)
Time = TIME

Mission requirement=
Start-point =Point_3D) + TIME +
Intermnediate..point= (Point_3D3 + TIME) +
Goal = Point_3D) + TIME
Mission-type = INTEGER

Path = 2 (Posture)

Reference posture =Posture

Current posture= Posture

Replanrequest= BOOLEAN

Range data=
Range= REAL +
Error= REAL

Sonar data= Rangejiata +

Transducer-no=INTEGER

Track-data= Current-posture +4{ Sonardata }4

Commanded posture=Posture +
Mode = INTEGER

Eniergencyposture=Posture

Status = BOOLEAN

System status=n (BOOLEAN In
Note: n is number of systems reporting

Obstacle-alert-BOOLEAN

Known-obstacles= (Polygon)

New-obstacle = I (Polygon) 1

57

Position update = Poinr3 + TIME +

Confidence-factor =INTEGER

Inertial-data =Rotationalveloity_3D + Attitude_3D3 +

Depth =REAL +
Fwd-speed= REAL +
Mag-hdg = REAL

Control -signal =
Fin-defiection=8 (Fin-angle) 8 +
Rt-maln-rpm= (DIGIT) 3 +
Lt-main..jpm=I DIGIT) 3 +
Fwd-horjpmn=(DIGIT) 3 +
Aft...horjpm= I DIGIT) 3 +
Fwd-ver..jpm=[DIGIT) 3 +
Aft-verjrpm= JDIGIT 13

Control positions = Control-signal

58

APPENDIX B

AUV CODE

AUV.H

Main header file for the auv control code.

#include <stdio.h>

#ifndef EXTERN
#deflne EXTERN extern
#define INIT(x)
#endit'

#ifndef MAIN
#define EXT extern
#endif

#ifdef MAIN
#define EXT
#undef MAIN
#endif

#define DAC2B_ ADDR OxFFFOOO4O /* GESDAC-2b addr *
#define DACLSBOFFSET Wx
#define DAClADDR OxFFFOOOOO

#define ADCIADDR (DAC1 ADDR + Ox HI)
#define ADCIMSB OxO
#define ADClLSB Wx
#define ADC1_CMDREG 0x4
#define ADCISTATUSREG 0x4
#define ADCIBUSY 0x40

#define ADC2_ADDR OxFFFOOO2O
#define ADC2_CHGAIN OxO
#define ADC2_STATUSREG Wx
#define ADC2_DATA OxI
#define ADC2_CMDREG Wx

#define MR_-BASE OxFFFOO700

#dcfinc VIAOADDR OxFFF00OXO /* GFSPIA-3A bus addr ~
#define ORBIRB 0 /* GESPIA-3A i/o reg B *
#tdefine ORA-IRA I /* GESPIA-3A i/o reg A *
#define DDRB 2 /* Dawa direction reg ~
~#define DDRA 3 f* Data direction reg ~

#define TICL 4
#defineT ICH 5

59

#define TlLL6
#define TlLH7
#define T2CL 8
#define T2CH 9
#define ACR I I
#define PCR 12
#define IFR 13
#define FRONT_RUD)_TOP 0
#define FRONT_RUDBOT 1
#define FRONTPLRIGHT 2
#define FRONTPLLEVI' 3
#define REARRUD_T('P 4
#define REARRUDBOT 5
#define REARPLRIGHT 6
#define REARPLLEFT 7

#define RIGHTMOTOR 0
#define LEFITMOTOR 2
#define SUPPLY 1

#define RIGHTMOTORRPMI 0
#define LEFT -MOTORRPM 1
#define ROLLANGLECH 7
#define PITCH_ ANGLECH 6
#define ROLLRATECH 9
#define PITCH_ RATE CH 8
#define YAWRATECfH 10

struct MFI-PTA(

unsigned short pra; /* port register A /data direction A ~

unsigned short cma; P' control register A *

unsigned short prb;

unsigned short crb; /* control register B *

EXT unsigned char Read-ortA0,Read_PortB0;
EXT unsigned short ReadPortABO;

EXT FILE *outfpl;
EXT FILE *outfp2;
EXT int data-length;
EXT int loopcnt;
EXT int end_test;
EXT int wrap-count;
EXT double t.
EXT double rpm;
EXT double main-motor delta I ,main-motor-delta2;
EXT int main-motor-volti;-
EXT int main-motor _voh2;

Function declarations

EXT void user-interfaccO, control-module(j;

60

EXT void loop...dataO, zeroj-latao, control-surfaccO, record data-ono;
EXT void record-data-offO, record-dataQ;
EXT void initialize -dacso,initialize-adcso;
EXT void ruddcrO,planeso;
EXT void main-motors offO~aliveO):
EXT void daclIO,dac 2bo;
EXT int. adc 10,adc20;
EXT double headingopich-angleo,roll-angleOcal..psio;
EXT double roll rate-gyroo,yaw rate-gyroo,pitchjrategyroo;
EXT double deptho;
EXT double right .m -rpmOjleftm-pnmO;
EXT double get-speedO;

EXT unsigned short psi-bit-old;
EXT double oldangle;
EXT double dg-offsetkpsi,kr;
EXT double k-z,k-theta,k-q;
EXT double kspecd;
EXT double ki-speed;

EXT double time-limit;
EXT int num break-,
EXT unsigned start_dwell;
EXT int direction;

EXT double x-com (20] ,ycom [201 ,zcom [201;
EXT double psi-com-otfset;
EXT double psi~com-s-t;
EXT double psi-com;
EXT double deltaxy-/
EXT double x, x-init;
EXT double y, yjinit; /* mnit pos input in user-interface()*
EXT double speed;

EXT int roll-rt.O,pitchratc-0,yaw _rate_0:
EXT int roll-O,pitch-0;
EXT mnt z-vaO:

EXT int pointer;
EXT int speedarrayf 11;
EXT double speed-limit, delta-speed;
EXT double delta-sum..speed;

EXT int tick, tick I, tick2, curr-tick, mask, count:
EXT double value;
EXT long date~time;
EXT short day;
EXT char ans;

Sonar related data items/functions/structures

#define NEW1YPE(x) (x *)(mallojc((unsigfled)sizeof(x)))

Sonar switch addresses for use
with GESPIA interface
Son ********************,****

#define SONARSW I WxE
#efn SOAW exO
#define SONARSW3 OxOD

61

#define SONARSW4 0x07
#define SONARTRIG 1 Ox 10
#define SONARTRIG2 0x20

Constant values for use with
sonar line fitting and obstacle
avoidance

#define CONVERT TO FEET 0.02398 /* GESDAC2 units ->ft */
#define MINOBSTACLERNG 25.0 /* Obs avoidance mg (ft) */
#define AVG PTS 10 /* filter avg window size */
#define MAXRNGDIFF 15.0 /* filter bandpass sides/bottom*/
#define MAXRNG_DIFF_FWD 25.0 /* filter bandpass-fwd sonar */
#define MAXPTS 1200
#define DEGTORAD 0.017453
#define FALSE 0
#define TRUE I

/* Constants for line seg package */
#define cl 3.0 /P sigma factor */
#define c2 .6 /* deviation const */
#define c3 .20 /* ellipse thinness ratio */
#define MIN_NO_PTS 3 /* least sqrs min */
#define MAXBADPTS 3 /* least sqrs bad pt buffer size*/

#ifndef SONAR
#define EXT extern
#endif

#ifdef SONAR
#define EXT
#undef SONAR
#endif

Variable declarations

EXT int error, range, swcnt, swcom, bad mg, bad-updates, range-index;
EXT int b_range, bad pt-no, obstacle-alert, new_obstacle;
EXT double range 1;
EXT double range2;
EXT double range3;
EXT double range4:
EXT double error 1;
EXT double error2;
EXT double avgng, range-com, k range, max-delta r, maxdelta_theta;
EXT double range array[10];
EXT doubie bad-pt buffer[MAXBAD_PTS[2]:
EXT double pool6f[21;
EXT double maxdelta_r, max_deltatheta; /* input in user interface() */

/ **********111********************* *******************

Function declarations
**************** *** **IH I*** .ItI*****,li********I~************ /

EXT void getinitavgo, get-avg-mgo, iniialize-sonars(;
EXT void ping_sonarso, sonars-ono, set-upsonarso;
EXT double atan20; /* not provided by math.h in current compiler */
EXT void initpooO;
EXT void matchmodel();
EXT void reset.line);

62

EXT void record-line-onO;
EXT void recordjline-offo;
EXT void line-segment -inito;
EXT void computelinesego;
EXT void end-ine.scgentO):
EXT void swapjinitpoirnsk;
EXT void convertcoordsO;

Data structures

typedef struct
(/* Data for each sonar's line segment ~

double sonar-darapts[MAXYTS][21; /* trmg ~
doub!e plane-pts[4li31;
double sgmxx,
sgmyy,
sgmxy,
sgmyx,
sgmx,
sgrny,
r -sonar,
theta-.sonar;
double mux,
muy,
muxx,
muyy,
muxy,
delta-x,
delta..y,
sgmx2,
sgmy2;
double sgmdelta-sq,
sigma,
d-major,
d-minor,
in-major,
in-minor;
double delta -line,
start-ptx,

endpt~x,
end-pty;
double line -length;
int i-s,
J-s,

k-s,
end-ptno,
start-ptno,
bad-pt,
too-long,
toojar-apart,
course-change;
nt depth-change,
range-pt,

max-x:
I LINE-SEGMENT, *LINE-SEG;

63

typedef struct

int range -ndex,
bad-mg.
bad-updates,
switch,
trigger,
sonarjd,

doublerange-array[AVG-2TS],
range-total,
avgjng,
max..mg-diff,
mm _obs-mg,
raw-mg;

)RANGE-DATA;

AUVMAIN.C

Main control code for the- auv.

#define MAIN

#include <errno.h>
#include <setsys.h>
#include <math.h>
#include "auv.h"
unsigned char*dacl a=DACIADDR: /* 4 Channels of DAC ADA-I DAC *
unsigned char*dacS b a = DAC2B_ADDR; /* 8 channels of DAC DAC-2B 3
unsigned char*adc I a =APC IADDR; /* 16 channels of ADC ADA- I
unsigned short*adc2_ a =ADC2_ADDR; 1* 16 channels of ADC ADC-2 *
unsigned short*viaO = VIAO_AD5DR; /* PIA addr *

void iniv arso;
void init-clocko;
void check clocko;

maino

RANGEDATA *front-sonar,*left-sonar,
* right-sonar,* bttom -sonar;
LINESEGMENT *lcft-line;

count = 0;
mask = OxOOOOffff;
obstacle -alert = OxO;
new-obstacle = 0;

front_sonar = NEWTYPE(RANGE_DATA);
left-sonar = NEWTYPE(RANGE_DATA);
right-sonar = NEWTYPE(RANGE_DATA):
bottomn_sonar = NEWTYPE(RANGEDATA);

left-line = NE WTYPE(LINE SEGMENT):

init-varso,

64

Ioopjao; /* Get z-corn & x-corn & y-comn arrays *

user-interfaccO;

initialize-dacsO:

initialize_adcso;

pnintfC' Position AUV for Directional Gyro Offset Measurement\.n");
printfC' Rate Gyro zero measurement~n");
printfC' Hit Any Key When Ready\n");
ans = getcharO,

* ans = getcharo;

set-Up~sonars(front-sonar, right-sonar, left-sonar.
bottomnsonar); /*Pass in all four sonars in this order*/

sonars...on(front sonar, left-..sonar);
/* pass in two sonars, must be one from each board-> (front or
right) followed by (left or bottom) *

zero datao;

printf('Starting\n");

psi-bit-old = Read_PortAB(MFIBASE);
psi_bit-old &= Dx3FFF;

aJive(lI0,startdwell): /* Wag fin every 10 seconds for total
duration of start-dwell seconds *

record-data -ono;
record-line-Oo;

initialize -sonars(front sonar, left-sonar);
initialize line(left line, 3);
while (enid-test) /'; I 0Hz control loop *

init-clocko;

getavg-ng(frontsonar);
getavg.yg(left-sonar);
update.line-seg(leftjline);
control-module(front-sonar, right,-sonar, left-Sonar, bottom sonar);

ping-sonars(front-sonar, left-sonar);

check-clocko; /* timed loop control ~

main-motors-offO;
record-data-offO;
endjine__segment(leftiine);,
record-lineofTo:

}*end maino *

init vars()

void initvars()

65

data length = 0;
loopcnt = 0;
end_test = 1;
wrap-count = 0;
t = 0.0;
mainmotor_voit2 = 512;nmi_motor_volt2 = 512;
direction = 1;
oldangle = 0.0;
psi.com offset = 0.0;
x = 0.0;
y = 0.0;
speed = 0.0;
pointer = 0;
delta sumspeed = 0.0;

}/* end init.globalsO */

init clockO

void initclock0

_sysdate(3,&time,&date,&day,&tick);
tickl=(tick & mask);

}/* end initclock0 */

check clockO

void check_clock

sysdate(3,&time,&date,&day,&tick);
tick2=(tick & mask);
if (tick2 < tick 1)
tick2 = tick2+100;
value=abs(tick2-tick 1);
while (value != 10)

if (tick2 < tickl)
tick2=tick2+ 100;
value=abs(tick2-tick 1);
_sysdate(3,&timc,&datc,&day,&tick):
ick2=(tick & mask);

}/* end chcksclockO */

The following sonar code is found in the file asonar.c.

AUV sonar modules called from main loop of control program or
from other sonar modules.

#define SONAR

#include "auv.h"

66

set upsonarso

void set-up-sonars(sonar I, sonar2, sonar3, sonar4)
RANGEDATA *sonarl, *sonar2, *sonar3, *sonar4;

sonarlI->badjng =0; /* front *
sonar2->badMg = 0; /* right *
sonar3->bad -mg = 0; /* left */
sonar4->bad-mg = 0; /* bottom ~

sonar 1 >bad-updates = 0;
sonar2->bad-updates = 0;
sonar3->bad..updaies = 0;
sonar4->bad-updates = 0;

sonarl.>switch = SONAR_SWI;
sonar2->switch = SONAR_SW2;
sonar3->switch = SONARSW3;
sonar4->switch = SONARSW4;

sonarlI->trigger = SONARTRIGI1:
sonar2->zrigger = SONAR_TRIG I;
sonar3->trigger = SONARTRIG2;
sonar4->trigger = SONARTRIG2;

sonar I->rangejtotal = 0;
sonar2->range-total = 0;
sonar3->range-total = 0;
sonar4->range-jotal = 0;

sonarl->rnax - gngdiff = MAX_RNG_DIFFJFWD;
sonar2->max -mg-diff = MAXRNGDIFF;
sonar3->max_rngdiff = MAXRNGDIFF;
sonar4->max_rngiff = MAXRNGDIFF;

sonarlI->min_obsmg =28.0; /* values for example only "
sonar2->mnin_obsjng = 8.0; /* values are mission dependent *
sonar3->min -obsmrg = 8.0; /* units in feet ~
sonar4->min-obs-mg = 3.0;

/end set .up .sonars()*

sonarsono

void sonars on(sonarl, sonar2)
RANGE-DATA *sonar], *sonar2;

viaO[DDRB) = Ox3F; /* set data direction regs *
via0[DDRA] = Ox(OO;

* via0[ORB-IRB] = sonarl ->switch & sonar2->switch; /*tur on sonar ~
tsleep(1); /* switch debounce time l0ins *
Wf end sonars-on()*

initialize sonars()

void initial ize sonars(sonarl, sonar2)
RANGEDATA *sonar], *sonar2.

67

inti;

for (i=0; i < 20; ++i)

viaO[ORBIRBI = (sonari ->switch & sonar2 ->switch)I
sonar I->trigger I sonar2-> trigger; /*trigger*/
via0[ORBIRB] = sonarl->switch & sonar2->switch; t'* clear ~
tsleep(5). f* wait for max range return 50 ms*/

gctjinitcavg(sonarl, sonar2);
)/*end initialize-sonars()o

initialize lineG

void initialize line(line, boc)
LINESEGMENT lijne;
inl bc;

line->loc = loc; /*set location id # *
resetjline(line): /* mui vars to zero *

gctnit-avg()

void get init avg(sonarl, sonar2)
RANGEDATA *sonarl, *soflar 2;

int ;
for(i = 0; i < AVGPTS; ++i)

ping-sonars(sonarl, sonar2);
tslecp(5);
sonarl ->range-array[i] = (floatadc2(2,0); /* board #1I~
sonar2->range-arraytil = (float)adc2(3,O); /* board #2 *
sonar I->range-total += sonar I ->range..array [i]1;
sonar2->range-total += sonar2->range-arrayi];

sonarlI->avg-rng = sonar 1 ->range-total/AVGYPTS;
sonar2->avg-mg = sonar2->rangeutota/AVGfTS;
sonarlI..>range-index = 0;
sonar2->range-index = 0;

W/ end getjinit-avg()O

ping-sonarso

void ping-sonars(sonarl, sonar2)
RANGEDATA *sonarl, *sonar2;

viaO[ORBIRBJ = (sonarl ->switch & sonar2->switch) I sonarl ->trigger I
sonar2 ->rigger;

via0[ORBIRBJ = sonarl->switch & sonar','->s\,ic h: / J clear *

/*end ping..sonars()o

68

getavg-mg()

void get-avgrng(sonar)
RANGEDATA *sonar;

if((sonar->switch ==SONARSWl) 11 (sonar- >switch ==SONARSW2))

sonar->rawrng = adc2(2,O);

else

sonar->raw,-ng = adc2(3,O),

filtcrjrangejlata(sonar);
)end get-avgmg()o

filter...mnge..data()

void filter range daza(sonar)
RANGEDbATA- *sonar;

if ((sonar->raw mg > sonar->avgjng)I
(fabs(sonar->rawjng - sonar->avg-mg) <= sonar->max_rngdiff) 11
(sonar->badmg >= MIAXBADPTS))

sonar->range_total = sonar->range-total -
sonar->rangearraylsonar->range-indcxl;

sonar->range-array [sonar->range index I=sonar->raw-mg;
sonar->range-total += sonar->raw_mg;
sonar->aNvgjig = sonar->range-totl/AVG-YTS;
sonar->range-index = (sonar->rangejindcx + 1) % AVGPTS;

if(sonar->badrng >= MAXBADPTS)

++sonar->bad-updates;

if(sonar->bad updates >= MINNOJ'TS)

sonar->badmg = 0;

else

+ +sonar- >badrng;

if((soniar->avgjng * CONVERTTO-FEET) <= sonar->min..obsj~ng)

switch sonar->sonar-num

case 1:

obstacle -alert = obstacle-alert I W;
break;

69

case 2:

obstacle-alert = obstacle-jslert I 0x4;
break;

case 3:

obstacle -alert = obstacle-alert I 0x2;
break;

case 4:

obstacle alert =obstacle-alert I Ox I;
break;

W/ end filter~range-iata()o

update line sego)

void updatejline-seg(iine)
LINESEGMENT *line;

if(line->rangept <= MINNO_'TS)

line-segnenl-inil(line):

if(Iine->rangept > MINNO-PTS)

line-segsompute(ine);
if(linc->badpt >= MAX_BAD_PTS)

end-linc..scgmeru(line);
resetj ine(line);
swap-init-points(line);

reset lineo

void reset line(line)
LINESEGMENT * line;

line->n-s 0;
line->is =0;

line->startpt-no =0;

line->end...ptno 0;
linc->range-pt = 0,
Iine->sgmx = 0.0;
line->sgmy = 0.0;
line->sgmx2 = 0.0;
line->sgmy2 = 0.0;
line->sgmxy = 0.0;
line->sgm-delta-sq = 0.0:,
line->max-x = 0;

70

line->min-x =0;

I ine-segmentinit()
Initialize a line segment and its associated variahies/flags
Called from, sonarjrange() in sonar ay.c.

void line-segmenLinit(line)
LINESEGMENT *line;

/*' Read in first points to establish initial line segment ~
line->line-length = 0.0,
line->bad-pt = FALSE;
/* accumulate variables *
line->sgmx += line->sonar data-pts[linc->ns]1;
line->sgmy += line->sonar-daa.pts[ine->n..s] [1];
line->sgmx2 += SQR(line->sonar data..pts[line->ns[O]);
line->sgmy2 += SQR(line->sonar~dataptslline->ns[1);
line->sgmxy += line->sonar..datajps[line->ns]O
line->sonar..datapts(Iine->n-sl[[1;
line->end-pi-no = line->n-s:
if(line->sonardatapts[Iine->ns[0] < line->sonardataptslinc->mninxj[O])

line->min-x = line->n_5;
if(line->sonar__data~pts[line->n s]lO] > line->sonar-data.pts~line->maxx](0])

line->max -x = linc->n-s;
/* Update the counters */

if (line->rangc_Pt ==)
line->start-ptno = line->n-s:

++line->n_s;
++line->i-s; /* current line segment point counter ~
if (line-wange..pt >= MIN-NO PTS)/* use x data points for first segment *

P* Calculate first line segment values *
line->mux = line->sgmx / line->i-s:
line->muy = line->sgmy / Iine->is;
line->muxx = linc->sgmx2 - (line->sgmx * line->sgmx) / Iine->i_s;
line->muyy = line->sgmy2 - (line->sgmy * line->sgmy) / line->i_s;
line->muxy = line->sgmxy - (line->sgmx * line->sgmy) / linc->i-s;

line->end-pt-no = line->n_s - 1;
line->thetasonar = (aa2(20*ie>uy, Ie>uylie>ux) 2.0;

line->r-sonar = line->mux * cos(lirie->theta_sonar) + line->muy " sin(Iinc->d1Cu sonar);
for (line->Ls = 0; line->j-s < MINQ-YTS; ++line->jLs)

line->k-s = (line->j-s + line->start-pt..no);
line->sgm-delwasq += SQR(line->sonardata~ptslline->ks] [0] - line->mux)

* SQRcos(line->thcta_sonar));
linc->sgmjelta-sq += SQR(line->sonar daia~ptsfline->ksj [1I - line->muy)

* * SQR(sin(line->1heta sonar));
line->sgm-delta-sq += 2.0 * (line->sonardaa-ptsline->k-s1O] - line->mux)

*(linc->sonar-data ptsl[line->k slI - line->niuy)
* cos(line->theta sonar) * sin(line->theta-sonar);

line-seg-omputeQ

71

Read in subsequent data points, after a line segment has been
initialized and more range values are obtained

line-seg-ompute(line)
LINESEGMENT linc:

/* Calculate test values *
line->signia = line->sgm-delta-sq / line->i-s;
/* Test new point for linearity fit */

line->delta -line = line->sonar data-pts[Iine->n sI[0] * cos(line->theta-sonar)
+ line->sonar data pts[line->n sillI] * sin(line->theta_sonar)
- line->r-sonar;

if ((fabs(line->dltajine)) <= (line->sigma *ci)) 11 (fabs(line->deltajline)) <= c2))

line->sgmx += line->sonar data~pts[line->ns] [0];
line->sgmy += ine->sonar.daw...pts[line->nS][[I];
line->sgmx2 += SQR(line->sonardataptsline->i.s] [0]);
line->sgmy2 += SQR(linc->sonardatap~s[linc->ns] [1 i);
line->sgmxy += line->sonar -data_pts[linc->n.s] [0] * line->sonar-data~pis[line->ns 1];
line->mux = line->sgmx / (line->L-s + 1);
line->niuy = linc->sgmy / (line->i_s + I)-.
line->muxx = line->sgmx2 - SQR(line->sgrnx) / (line->Ls + 1);
line->muyy = Iine->sgmy2 - SQR(line->sgmy) / (line->i..s + 1);
line->muxy = line >sgmxy - (line->sgmx * line->sgmy) / (line->i_s + 1);

/* calculate ellipse values */
line->mmajor = (line->muxx + line->muyy) / 2.0 - sqrt((line->muyy - line->muxx)

* (line->muyy - line->muxx) / 4.0 + SQR(line->muxy));
linc->m_minor = (line->muxx + line->muyy) / 2.0 + sqrt((line.>rnuyy - line->muxx)

* (line.>muyy - line->muxx) / 4.0 + SQR(line->muxy));
line-A d major = 4.0 *sqrt(fabs(line->m-minor / (line->is + 1)));
line->d-minor = 4.0 *sqrt(fabs(line->mmajor / (line->iLs + 1)));

/* Test new point for ellipse line->thinness *
if ((line->d minor / line->d major) <c0)

line. >endptno = line->n_s; f* update end point *
line->bad-pt = 0; /* reset moving bad-pt counter ~
P*
*update line segment paramezers to include new
*point

line->theta-sonar = (atan2((-2.0 * linc->muxy),
(line->muyy - line->muxx))) / 2.0;

line->r-sonar = line->mux * cos(line->theta sonar) + line->mu)y
* sin(linc->theta sonar);

line->sgm-delta -sq += 2.0 * (linc->sonar ata pts[line->nsI[0] - line.>mux)
" (line->sonar -dat _ptstline->nsIJ -] line->muy)
" cos(line->theta sonar) * sin(line->theta sonar);

line->sgm-deltasq += SQR(line->sonar~data..pts[l ine->ns] [I] - line->muy)
* SQR(sin(line->theta_sonar));

line->sgmdelta sq += SQR(line->sonar datapts[Iine->ns[0] - Iine->mux)
* SQR(cos(linc->theta_sonar));

if(line->sonar-dataps[line->ns] [0] < line->sonar-data-pts[line->m in-x] [0])
line->minx = line->n-s;

if(line->sonar -dataps[line->n sI [01 > line->sonar_dataptslline->nmaxx][0I)
line->max-x =line->n-s;

++line->n-s:
++line->i_s,

72

line->delta-x = line->sonar -dat _ptsjline->startptnol [0]
. line-> sonar-datupts [Ii ne->end.pc.nol [0I;

line->delta.y =line->sonar ja~pts[Iine->startptno [1]
- line->sonar-data.pts[line->end.pt-nol[1];

line-A'ine-lcngth = sqrt(SQR~line->dehta x) + SQR(linc->deta_yV):

else

badpt.buffer[line->bad.pt] 10] line->sonar.aa .pts[line->n..s1[0];
bad[.ptbuffer[line->bad.ptl([1] line->sonar-data..ptsfline->nws][I]
++line->bad-pt;

el se

ba&..ptbuffer[line->badp1][0] = line->sonar..datajnts[linc->n-s] [0];
bad.pLbufferlline->bac~pt][11] = line->sonar data..ptslline->n.s][1];
++line->bad..pt;,

end line_segmento
Wrap up a line segment if bad data pt, course change, depth change,
or segment max length reached.

void end-line..segment(linc)
LINESEGMENT *line;

int i;
double line-angle;

/* start new line segment *

linc->sgmx = 0.0;
line->sgmy = 0.0;
line->sgmxy = 0.0;
line->sgmx2 = 0.0;
line->sgm)y2 = 0.0;
line->sigma = 0.0;
line->sgm-delta..sq = 0.0:

/* close out old segment, convert radius to positive value first *
if (line->r_sonar < 0)

Iine->theta-sonar =180 * DEGTORADl + line->theta-sonar;,
line->r-sonar = -1 line->r_sonar;

/* determine start and end points on the computed line segment *
line->start-pt-x = linc->sonar.Aata ptsfline->start pt..nol f0];
line-> start-.pt-y = Iine->sonarjiatajflslline->startptno] [11;
I ine->end..pt-x = I ine->sonar-data-ptsl ine->end-pt-no] [01:
line->end-pt-y = Iine->sonar..datajftls[i ne->end..ptnolI [1;
line->delta-line = line->statpt-x * cos(line->theta_sonar)

+ lirne->start..pty * sin(l inc-> the t&.sonar) - fabs(line->r-.sonar);
line->start-ptx = line->start..ptx - (line-- delta-line * cos(line->theta_sonar)):
Iine->start_y = line->start.pty - (line->delta-line * sin(line->theta_sonar)):.
fine->delta-line = line->end_Pt_ x * cos,(lne->dicw sonar) + line->end..pty sinkhnIc->thcu_,oniuI

73

- fabs(line->r-sonar);
line->end-ptx =line->end-ptx - (line->delta-line * cos(l ine-> the ta-sonar));
line->end..pty = line->end-pt-y - (line->delta_line * sin(line->theta-sonar));
line->delta-x = line-> start-pt-x - line->endptx;
line->deta-y = line->start_PL~y - Iine->endLpty;
line->linejlengh = sqrt(SQR(line->delrax) + SQR(line->delta-y)

+ SQR(line->sonar-daz&p~line->srart-no] [2]
- line->sonar..datajns[line->end~ptno][1]));

if((line->linejength >= 24.0) && (line->Ioc != 1))

match model(Iine);
if(pool surface == 9) /* no match *

create-new-obstacle(line);
record line(Iine);
new-obstacle = 1, /* set flag ~

++line->n-s:

create-new obstacleG)

void create-new-obstacle(line)
LINESEGMENT * line;

if (line->loc == 4)I* Bottom sonar ~

line-.angle = atan2(Iine->sonar data..pts[line->startptno[21
- linc-> sonar-data-i pt[Iine->end pt nol [2 1,
linc->sonar-data-pis[line->start pt-no][0] - line->sonar-data_ptsllinec->end pt_nol[i:

line-angle = line-angle - PIOVER2;
Ielse

line-angle = atan2(line->sonar data-ptslline->startptno] [1]
- line->sonar-da apts~line->end-pt.nol[I],
sqrt(SQR(line->sonar -datapts[line->startpLno] [0]
- line->sonar-data-pts[line->cnd ptino] [01)
+ SQR(line->sonar-daca-ptstline->start-ptno] [2]

- Iine->sonar-data-pts[line->end ptno] [2])));

if ((line->loc == 4)1/* Bottom sonar ~

offsetlc =line->sonar~data ps[line->start ptno][3] 0.087 155 *cos(line angle);
offset Is = line->sonar _aia..pas[line->slarpt-no][3I 0.087 155 *sin(line-angle);

offset2c =line->sonar-data-ps1inc->endjptno[3] 0.087155 *cos(line_angle);

offset2s = linc->sonar-data..psIine->endptno]31 0.087155 *sin(line-angle);

Ielse

offsetlc = Iine->sonardata ps~line->start pnol[3J * 0.087 155 *cos(linc angle);
offsctls~ = icsnad tapsjlinc->start~pt_no][3] 0.087155 * sin(linc-angle):

offset2c = linc->sonardatap~slline->endptno]I3I 0.087155 *coskhimc_amiglcr)

74

offset2s = line->sonar-data..ptslline->end..pt~no[3] *0.087 155 *sin(Iineangle);

set_plane~p~r(line);
Iine->n-s = 0
line->sLarptno =0;

line->end..ptjo =0;

for (i = 0; i < 100; ++i)
linc->sonar data pts[i][3] 0.0:

* swap-init.points()

void swapjinit..points(line)
LINESEGMENT * line;

inti;

Iine->i-s = 0;
Iine->rangept =0;
for(i = 0; i < line->bad-pt, ++i)

fiie->sonardatapts[Iine->nsl[0] =bad-pt-bufferti] [01;
line->sonar data pts[line->n-s1[[II bad-pt-buffer[it [1];
++line->range-pt;
Iine-segment-init(line):

convert_coords()

void conventcoords(line)
LINE-SEGMENT lijne;

Iinc->sonar datapts[Iine->ns[0] x + avg~rmg *cos(psi - 1.57079)
* CONVERTTO FEET;

Iine->sonar -dat .ptslline->ns][1] = y + avgjiig *sin(psi - 1.57079)
*CONVERTTO_FEET

++Iine->range-pt;

sctplanejflr()
Store the plane data points into the array for display.

* ctplane-pr(linc)
LINESEGMENT line;

*n mu;
double line-angle;

if(Iine->Ioc == 4) /* bottom sonar ~

Iine->plancQ..s[0j [01 = linc->sonar~datapts[linc-swrt.ptnoI[0] + offset Ic;

75

line->plane_pis[0I 1] = line->sonarjiai~psfhne->startpt.no]1 ii;
line->planejpts[Oi [2] = Iline -> sonar-data-ps [line-> start-no] [2] + ofiseti s;
line->plane..pts[11 [0] line-> sonar-data-pts tli ne->start-no] [0] - offset ic;

line->plancepLsl l] = linie->sonardataptsiliflc->start_ptnoI 1;
line->plane-pis[1)[2] = Iine->sonar _da 4-pts[line->start.pt.no] [21 - offset I s;
line->planepts[2] [0] = line->sonardatapts[line->endpt-no]l0l + offset2c;,

line->planepts[) [1] = linc->sonar data-pts[line->end.pt nolf 1];
line->plane-pts[2] [2] = line->sonar data...pts[line->end.pt no][2] + offset2s;
line->planeps[31 [0] = Iine->sonar_ata-psline->endptno](O] - offset2c;

line->planc-pts[3] [1] = line->sonar-datapts[line->endprno][I];
line->planepts[3j[21 = line->sonar data-pts[line->end-ptno][2] - offset2s;

I else

line->planc pts[Ol [0] = Iinc->sonar danaptsl Iine->start-pt-no] [0]
+ offset I c *cos(Iine->theta_sonar);

linc->plane ps([ft] =linc->sonar data~psln-satpnl2
+ offsetls + offsetlc;

line->plane-pts[0] [2] = line->sonar -datapts1Iine->start_ptnol [1];
line->planc-ptsf 1][0] = line->sonar..daa-ptsfline->start-no] [0]

+ offsetIc *cos(line->thetasonar);

Iine->plane-pistl]11 line ->sonar-dataptsf line->start-pt-no] f[2]
- offsctls - offsctlc;

linc->plane-pts[1] [2] = linc->sonar-datapts[lin->start ptno] [1];
Iine->plane.pts[21 [0] = line->sonar-dataps[ine->endptno[0]

+ offsetlc *cos(line->theta-sonar);

line->plancpis[2111] =linc->sonardatapts[line->endptno][2]

+ offsct2s + offsct2c;
line->planc..pts[2] [2] = linc->sonar-dau -pts[line->endptno] [1];
linc->plane-pts[3] [0] = line->sonar-datapts[Iine->endptno][0]

+ offsctlc *cos(linc->thctA_sonar);

line->plane..pts[3] 11] line->sonar..daa.pts[line->cnd-ptno[2]
- offscL2s - offsct2c,

line->plane-pts[3] [2] =line->sona-datapts[linc->endptno] [1];

atan2o Not available in GESPAC math lib

double atan2(x l,y)
double xl,y;

double x,xi, q, q2;
int sign;

ifRy != 0.0)

x = xl/y;

else

76

if(xl >= 0.)

return(O.0);

else

return(3.141592654);I

xi = atan(x);
if((xl < 0.) && (y > 0.))

xi = xi + 3.141592654;

if((xl < 0.) && (y < 0.))
I

xi = xi + 3.141592654;

return(xi):

init-pool()

void init_pool()

/* poolti]0lO = r
pool[i]lI = theta

positions are taken relative to start point of AUV (x-init,y-init)*/

pool[0f]0J = y_init; /* north wall - next to launch pt */
pool[OI[l] = 1.57078;

pool[I1[0] = 117.58 - xinit; /* decep end */
pool[1l] = 0.0;

pool[21[01 = 60.36 - y_init;
pool[2]1i] = 1.57078;

poo[3][01 = x_init;
pool[31]1 = 3.141592; /*shallow end */

pool[4][01 = 4.0; /*shallow botom */
pool[41[l] = 1.6388;

poo[5][0] = 8.0: /*deep end */
pool511] = 1.57078;

match_modelO

void matchmodel(linc)
LINESEGMENT *line;

int i;
double delta r, dclta_theta;

77

pool-surface = 9; r* default for no match *
for(i = 0; 1 c 6; ++i)

delta-r = line->r-sonar - poolfij(01;,
delta-theta = fabs(linc->thctasonar) - pool[tiltI]l;
while(delta-theta > 3. 141592)

delta-theta = delta-theta - 3.141592;

if ((fabs(delta r) c= max-delta-r) && (fabs(delta theta) c= max-delta dicta))

pool-surface =;

return,

record line onO

void record line on()

if((outfp2 =fopen('obs.d", "w")) ==0); /* open file ~

exit(- 1);

record_lineO

void record fine~fine)
LINESEG-MENT line;

intij;

for(i =0; i< 4;++i)

foroj=O; j < 3; ++j)

fprintf(outfp2, "%lF",line->planepts[i][jI);

fprintf(outfp2, "nf");

record_line offO

void record line off)

fclose(outfp2):

78

APPENDIX C

Sonar related code for the AUV II simulator in gravy5/auv/magrino/sim.
Following is a portion of the header file AUV.H

EXT void drawsonarploto;
EXT void initializesonarso;
EXT void initializevirtualpool();
EXT void initialize4poolobsO;
EXT double offsetlc, offsetl s, offset2c, offset2s;

/* structure definitions */

t pedef struct Point3Struct {/* 3D point /
double x, y, z;

Point3;
typedef Point3 Vector3;

typedef struct Matrix4Struct { /* 4 x 4 matrix */
double element[4][4];

} Matrix4;

typedef struct {
float forces[61;/* summation of forces & moments */
float mminv[61[6]; /* inverse mass matrix */
float acc[61;/* udot, vdot, wdot */
float vel[6];/* u,v,wp,q,r */
float pos-change[6l;
float delta.t;/* time between updates */
float pos[3];/* x,y,z */
float roll, pitch, heading;
double commanded-posture[15(X)](17]; /* designated path for temp use */
double waypoint[10] [4];
double psi_0;
int wpts;
int obsavoid;
int posture-no;
Matrix Hmatrix;
Matrix incrementalH matrix;
Matrix T_matrix;

DYNAMICSTRUC, *Dyn-ptr;

typedef struct Triangle {
Point3 vO;
Point3 v1;

79

Point3 v2;
vector3 normal;
int i 1;
int i2;
double d;
double r;
double theta;

Itriangle;
EXT triangle pool[28],

typedef struct
/* Data for each sonar's line segment ~

double sonardaa..pts[1500] f7J;/* x,y,zrange,courseC, depth *
double plane..pts[100] [4][3];
double sgmxx.
sgmyy,
sgmxy,
sgmyx,
sgn ax,
sgmy,
r-sonar,
theta-sonar;
double mux,
muy,
muxx,
muyy,
muxy,
delta-x,
delta-y,
sgmx2,
sgmy2;
double sgm-delta-sq,
sigma,
dmajor,
d-minor,
m-major,
mminor;
double delta-line,
start pt-x,

end-ptx,
en&..pty;
double line-length;
int i-s,
i-s.

end-pt-no,
startPt-no,
bad-pt,
toojong,
too-far-apart,

80

course-change,
in! depth-change,
range-.pt,
n-plane,
boc;

LINESEGMENT, *LINESEG,

typdefstrct/* Position and orientation of a transducer ~
Matrix sonar-matrix;
Point3 *position;
Vector3 *diretion,
Vector3 *negate-dir;
double max..jange;
LINE_SEGMENT line-.data;

TRANSDUCER, *SONAR-HEAD.

typedef struct
/* Set of all transducers ~

in! bottomson;
in! right-on;
in! left-..on,
in! front-on;
TRANSDUCER bottom sonar:
TRANSDUCER right-sonar.
TRANSDUCER left-sonar;
TRANSDUCER front-sonar;
TRANSDUCER Lop-sonar;

SONARSUITE, *SONARIYI'R;

typedef struct[
float bottom _learance;
float gravity;/* acceleration due to gravity ~
float rho; P~ water density of environment *
float nu; /* water viscosity of environment *

AUTOPILOTSTRUCT autop:
OBSERVER obs;
VEHICLE-GEOMETRY geo; 1* vehicle geometry struct ~
FLAGS sys; /* flags struct */
COEFFICIENTS coeff; P~ hydro coefficients struct*/
MBARI_-BAY bay;
DYNAMIC-STRUC dyn;/* ivehicle position struct ~
AUVPOLYGONS poly;/* auv objects (polygons) *

SURFACES surf:
RECORDER rec;
NPSPOOL pool;,
PANELS panel;
SEMAPHORES multi;
CONSTRAINTS constraint,
SONAR_SUITE SONAR;

81

double fromt-range;

ISubmarine, *Sub-ptr;

Sonar specific constants/variables found in SONAR.H

#include <stdio.h>
#include <maith.h>
/* Conistants for sonar package *
#define MAX_-LINELENGTH 200.0
#define MAXPTGAP 300.0
#define MAXCOURSECHANGE 10.0
#define MAXSONARRANGE 1100.0
#define MAXDEPTHCHANGE 20.0
#define MINNOPTS 3
#define MAXRAND 37767.0
#define SQR(x) ((x) * (x))
#define CONVERTTOINCHES .28 79

/* Constants for line seg package */
#define c 13.0 1* sigmna factor ~
#define c2 .6 /* deviation consi t
#define c3 .60 /* ellipse thinness ratio ~
#define c4 24.0 /* minimum line segment length *

typedef struct P* ray-tracing structure ~

double ray..matri x[I100] 1:
mnt ray-matrix-index;
Vector3 *ray-origin;
Vector3 *ray-direction;

)SONAR-RAY, *RAY_STRUCT;

AUV SIMULATOR SONAR SIMIULATOR

This package is called from main-loop.c of auv each time that the auv position is updated. The procedure
initialize_sonars() is called from the initialize-auv() of initialize.c, it sets all of the sonars to their initial po-
sitions and orientations. The procedure sonar-range performs a ray-trace routine to determine if a sonar beam
has intersected with a world polygon in a manner to give a valid sonar return. Sonar-range sends a valid range
point to the package line-seg-bay.c for least-squares fitting, and determination of a plane through the line that
has been fit to the data points. The procedure plot-sonaro displays the range points and the planes in the pool.-
Constants are contained in the sonar.h header file, and structures are in die auv.h file.

#Include craath.h>
#include cstdio.h>
#include <malloc.h>

82

#include <sys/types.h>

#include "auv.h"
#include "sonar.h"

#define NEWTYPE(x) (x *)(malloc((unsigned)sizeor(x)))

/*** function declarations***/

double M3oto;
Vector3 *V3NewO;
Vector3 *V3Negatc();
Vector3 *V3Dupljcateo;
double V3Length0;
double V3SquaredLengtho;
Vector3 *V3NormalizeO;
Vector3 *V3MulLByScalar0;
Vector3 *V3DivideByScalar().
Vector3 *V3Sub0;
Vector3 *V3AddO;
double V3istanceBetweenTwoPointsO(:
void V3MuILMauixByPoint0;
void reset-lhneo,
void check lengtho;
void check-distancco:
void check-course();
void check..deptho;
void ping..sonaro;
void trace-rayo;
Vcctor3 *compute-rcflctjono;
void get-rangeo;
double compute~distance from-sonaro;
void initialize-ray-structo;
void positionsonaro;
void direct-sonaro;
void replay-sonar~datao;
int match_rnodclQ);

initial izc-sonarso
Set up the individual sonar head directions, locations, and ranges.

void initial ize sonars(SONARAUV)
SONAR-SUITE *SONARAUV;

mnt i, j,k;
SONARAUV->bottom-on = T RUE;
SONARAUV-> bottom -sonardirection =V3New(0.0, -1.0, 0.0):
SONARAUV->bontom-sonar.position = V3New(0.0, -1.0, 0.0);
SON ARAUV->bottom-sonar Ii ne-data.too-long = FALSE;
SONARAUV->bottom -sonar.]ine-data.too-far-apart = FALSE:
SONARAUV->bottom-sonar.linc-data.course-change = FALSE;

83

SONARAUV->bottom-sonar.ine-data.depth change = FALSE;

SONARAUV->right-on =TRUE;
SONARAUV->right-sonar.dircuon =V3New(l.0, 0.0, 0.0);
SON ARAU V->righi~sonar.pos i ion =V31NcAwk0,0, -1.0, 0.0),
SONARAUV->right-sonar.Iine-data.toojlong = FALSE;
SONAR_-AUV->rightsonar.Iine data.toojfar.apart = FALSE;
SONAR_-AUV->rightcsonar.Iine data.course_change = FALSE;
SONARAUV->right-sonar.linc data.depth-change = FALSE;

SONARAUV->Ief(-on = TRUE;
SONARAUV->eft-sonar.dircuon V3New(-1.0, 0.0, 0.0);
SONARAUV->Ieft -sonar.posiuion =V3New(0.0, -1.0, 0.0);
SONAR .AUV->leftsonar.Iine -data.too ong =FALSE;
SONAR_-AUV->Ieft -sonardinc -data.tooj ar-apart = FALSE;
SONAR_-AUV->Ieft -sonar.Iinc-dita.courseschange = FALSE;
SONARAUV->Ieft-sonar.Iine-datadepuiuchange = FALSE;

SONAR AUV->front on =TRUE:
SONAR -AUV->front sonar.direction = V3New(0.0, 0.0, -1.0);
SONAR -AUV->front-sonar.position = V3Ncw(0.0, -1.0, 0.0);
SONAR...AUV->front-sonar.ine-data.toojlong = FALSE;
SONAR_-A'JV->front-sonar.ine data.toojfar -apart = FALSE;
SONAR_-AUV->front -sonarline -datacourse-change =FALSE:
SONARAUV->front-sonar.line-data.depth-change =FALSE;

SONAR -AUV->bottom-sonar.negate-dir = V3New(0.0, 1.0, 0.0);
SONAR..AUV->righLsonar.negate..dir =V3New(-1.0, 0.0, 0.0);
SONAR -AUV->left-sonar.negate-dir =V3New(1 .0, 0.0, 0.0);
SONAR.AUV->front-sonar.ncgaicdir = V3New(0.0, 0.0, 1.0):

SONAR -AUV->bottom-sonar% position = V3New(0.0, 0.0, 0.0);
SONAR..AUV->right-sonar.position = V3New(0.0, 0.0, 0.0);
SONAR-AUV->Acft-sonar.position =V3New(0.0, 0.0, 0.0);
SONAR-AUV-a>frorit-sonar.position = V3Ncw(0.0, 0.0, 0.0);

SONAR_-AUV->bottom-sonar.line-dataloc = 1;
SONAR..AUV->right..sonar.Iine.data.Ioc = 2;
SONAR_-AUV->Icft-sonarline-dataloc = 3;
SONAR AUV->front-sonar.line-data.Ioc =4;

SONAR_-AUV->bottom-sonar.max-range MAXSONARRANGE;
SONAR..AUV->righu..sonar.max-range = MAXSONARRANGE;
SONAR_AUV->Ieft~sonar.maxjrange = MAXSONARRANGE;
SONARAUV-> front-sonar. max -ange = MAXSONARRANGE;

for (i=0; i< 100; ++i)

SONARAUV->bottom-sonar.line-data.planc-pts[i][0][0] = 0.0;
SONARAUV->right-sonarline-dataplan-pts[i[0][O] = 0.0;
SON ARAU V->Iceft-sonar.Iine-data.plane-pitli 1[0j[01 = 0.0;

84

SONARAU V->front-sonar.line-data.plane-pistil [0] [0] 0.0;

initiahizejay.struct()

void initia zeray.sruc t(raystruc t)
SONAR-RAY *ray-sluct,

int ij;

for(i = 0; i< 100; ++i)

for = 0; j <8; ++j)

ray-sLruct->ray-matrixijUl 0.0;

ray-stmuct-> ray-matri x_index =0;
ray-sruct->ray-origin = V3New(0.0, 0.0, 0.0);
ray-sruc->ray-direction = V3New(0.0, 0.0, 0.0);

*draw-sonar-.plot

*Select each sonar in sequence, check for an echo, then plot data.

void draw_sonarplot(SONAR_AUV, au%-)
SONARSUITE *SONARAUV;
Sub-ptr auv;

SONARHEAD which-sonar;
LINESEG line-vars;
volatile SONAR-RAY ray-data:
volatile SONAR-RAY *ay-struct;

ray-struct = &rayjata;
which-sonar =&SONAR-AUV->left-sonar; /* used for mission replay-insert desired sonar*/
if (auv->constraint.box) I* actual mission replay switch *

replaysonar-data(whichsonar, auv);

else

initializray.struc(raystruct);
which-sonar = &SONARAUV->bottom sonar;
if (SON AR_AUV->bottom -on)

85

ping-sonar(which-sonar, auv, ray siruct);
++ray-struct->.-ay-maui-indcx;

which sonar->direction->y = -0.996 19;
whichsonar->direcfion->x = 0.07547,
which-sonar->dirccuon->L = 0.04357.
ping-sonar(which-sonar, auv, ray stiruct);
++ray-struct->ray-matrixjndex;
which sonar->direcuion->y = -0.99619;
which sonar->dircuon->x = 0.07547;,
which sonar->direcfion->z = -0.04357;
ping-.sonar(which sonar, auv, ray-struct);
++ray-struct->ray-maurix-ndex;
which -sonar->direcbon->y = -0.99619;
which sonar-z'direction->x = 0.0;
which sonar->direcbon->z = -0.08715;
ping-sonar(which-sonar, auv, ray'struct);
.4+raysruct->raymarxndex;,
which sonar->dircton->y = -0.996 19;
which sonar->dirm-Cuon->x = -0.07547;
which sonar->dircton->z = -0.04357;
ping-sonar(whichsop.ir, auv, raystruct)-:
++ray-sLruct->ray-marixxinlx;
which sonar->dircuon->y =-0.99619;
which sonar->dircction->x =-0.07547;
which-sonar->direcfion->z = 0.04357;
ping-sonar(which-sonar, au%,, ray-structu;
++ray-strucL->ray-marix-indcx;
which -sonar->direction->y = -0.99619;
which sonar->dirction->x = 0.0;
which sonar->direcuon->z = 0.087 15,
ping-sonar(which_sonar, auv, ray-struct);
++ray-sruct->ray..matrix-index;

which-sonar = &SONAR_AUV->rightsonar;
iJ (SON ARAU V->right-on)

ping-.sonar(which-sonar, auv, ray siruct);
r+raystruct->ray matrix-index;
which-sonar->dircction->x =0.99619;

which-sonar->dircuon->y =0.07547;

which -sonar->direccon->z =0.04357;

ping- sonar(w h ich_ sonar, auv, ray-sruct);
++ray-struct->ray-maurixjindex;
which-sonar->dircction->x =0.99619:
which-sonar->direction->y = 0.07547,
which sonar->direcfion->z = -0.04357,
ping-sonar(which-sonar. auv, ray-sruct);
++ray-struct->ray-marix-index;
which-sonar->dir-Uon->x = 0.99619:
which-sonar->dirccuon->y = 0.0;

86

which sonar->direction->z = -0.08715;
ping..sonar(whichsonar, auv, ray-struct);
++ray~struct->ray_matrix-indcx;
which-sonar->direcdon->x = 0.99619;
which-sonar->direcion->) = -0.0754-1
which sonar->direciion->z = -0.04357;
ping...sonar(which..sonar. auv, ray...struct);
++ray..siruct->ray-matrix-index;
which sonar->direction->x = 0.996 19;
which sonar->direction->y = -0.07547;
which sonar->direction->z = 0.04357;
ping-sonar(which-.sonar, auv, ray-.struct);
++ray-struct->ray-marix-index;
which-sonar->direction->x = 0.99619;
which-sonar->direction->y = 0.0;
which-sonar->direcuion->z = 0.08715;
ping...sonar(which-sonar, auv, raysruct);
++ray-struct->ray-marix-index;

which-sonar = &SONARAUV->Icftsonar;
if (SONAR AUV->left-on)

ping-sonar(whichsonar, auv, ray-struct);
++ray-sruct->ray-matrix-index;
which sonar->direction->x = -0.99619;
which sonar->direction->y = 0.07547;
which sonar->direcfion->z = 0,04357;
ping-sonar(whichsonar, auv, ray...struct);
++ray-struct->ray-matrix-index;
which -sonar->direction->x =-0.99619;

which -sonar->direction->y =0.07547;

which -sonar->direction->z =-0.04357;

ping-sonar(whichsonar, auv, ray..struct);
++ray-struct->ray_matix-index;
which sonar->direction->x = -0.99619;
which sonar->direction->y = 0.0;
which sonar->direction->z = -0.087 15;
ping-sonar(whichsonar, auv, ray-sruct);
++ray..struct->ray-matrix-index;
which sonar->direction->x = -0.996 19;
which sonar->direcUon->y = -0.07547;
which -sonar->direction->z = -0.04357;
ping-sonar(which-sonar, auv, ray-.struct);
++ray-struct->ray-matrix- index;
which sonar->direcuon->x = -0.996 19;
which sonar->direcdon->y = -0.07547;
which sonar->direction->z = 0.04357;
ping..sonar(whichsonar, auv, ray-struct);
++ray-struct->ray-matrix-index;
which-sonar->direcdon->x = -0.99619;

87

which_sonar->direction->y = 0.0;
which-sonar->direciion->z =0.08715,
ping..sonar(which..sonar, auv, ray...struct);
++ray-struct->ray-matix-index;

which -sonar = &SONARAUTV->frontsonar;
if (SONAR AUV->front on)

ping-.sonar(which-sonar. auv, ray..struct);
++ray-struct->ray-matix-index;
which-sonar->direction->z = -0.99619;
which-sonar->direcuion->y = 0.07547;
which-sonar->direction->x = 0.04357;
ping-.sonar(which-sonar, any, raystruct);
++ray-struct->ray-matrix_index;
which-sonar->direcuion->z = -0.996 19;
which-sonar->direction->y = 0.07547;
which-sonar->dircction->x = -0.04357;
ping..sonar(whichsonar, auv, raystruct);

++ray-struct->ray-marix-index;
which-sonar->direction->z =-0.99619;
which-sonar->directfion->y = 0.0;
which-sonar->direction->x = -0.08715;
ping-sonar(whichsonar, auv, ray struct);
++ray-struct->ray-marix_index;
which-sonar->direction->z = -0.996 19;
which-sonar->direction->y = -0.07547;
which-sonar->direction->x = -0.04357;
ping-sonar(which sonar, auv, ray_struct):
++ray-struct->ray-marix_index;
which-sonar->direction->z = -0.99619;
which-sonar->direction->y = -0.07547;
which-sonar->direction->x = 0.04357;
ping-.sonar(whichr.sonar, auv, ray struct);
++ray-struct->ray-matrix-index;
which-sonar->direcuon->z =-0.99619;
which-sonar->direction->y = 0.0;
which-sonar->direction->x = 0.08715;
ping..sonar(whichr.sonar, auv, ray..struct);
++ray-struct->ray-matrix_index;

which-sonar = &SONARAUV->bottom-sonar;
which-sonar->direction->x = 0.0;
which-sonar->direction->y = -1.0;
which-sonar->direction->z = 0.0;
direct~sonar(whichsonar,auv);
if (SONARAUV->bottom on)

get-ange(which.sonar,auv, ray..struct);

88

which-sonar = &SONAR-AUV->right-sonar;
which-sonar->direction->x = 1.0;
which-sonar->dircction->y = 0.0;
whicti-sonar->direction->z = 0.0;
direct...srnar(which-sonar,auv);

if (SON ARAUV->right-on)

get-range(which-solar,auv, ray-.slxuct);

which-sonar = &SONARAUV->left sonar;
which-sonar->direction->x =-1.0;

which-sonar->dircction->y =0.0;

which-sonar->direcuion->z =0.0;

direct sonar(which_sonar,ativ);

if (SONAR&AUV->left-on)

get-range(which-sonar,auv, ray struct);

which-sonar =&SONARAUV->front-sonar;
which-sonar->direction->x =0.0;

which-sonar->direciion->y =0.0;

which-sonar->direction->z =-1.0;

directsonar(which_sonar,auv);
if (SONAR AU V->front-on)

get-range(which-sonar,auv, ray-struct);

free(raystruc t-> ray.origin);
free(ray~struct->ray..irection);

reset sonars(SONARAUV);/ Back to orig posits *
I/* end else*/

plot-sonaro
Draw range marks and derived planes, Front sonar shows range only.

plot-sonar(line,auv)
LINESEGMENT *line;
Sub-pt auv;

float temp 11[3), temp2[3], temp3 [3], temp4[3];

89

int fi;
/* Plot the range points *

for (fi =0; fi< 1500; fi =++fi)

if (line->sonrjatAps[fi][3] != 0.0)

if ((line->Ioc =- 1) 11 (line->loc =3))
cmov(line->sonar-datapts~ Wi (0], line->sonar-dataptsl'[i I],
line->sonar-data.pts[fi][21);

else

" y & z points swapped by Iine-seg..bay
" routines, so swap back

if(line->sonar datapts[fi][3] = 1.0)

RGBcolor(200,0,200);
cmovoine->sonar data-pts[fl] [0],
line->sonar-data-pts~fi] I],
line->sonar-data-pts[fi] [2]);

else

cmov(fine->sonar-datapts[fi] [0],
line->sonar..data..pts[fi] [2],
line->sonar..dat~a-pts[fi] [1]);

switch(line->loc)

case 1:
RGBcolor(255, 255, 0);
break;

case 2:
RGBcolor(0, 255, 0);
break:

case 3:
RGBcolor(0, 0, 255);
break;

case 4:
RGBcolor(255, 0, 0);
break;

charstr("x");
if(auv->constraint.box)

90

cmov(line->sonar _data ptslfi] [31, line->sonar_data ptslfi] [4],
line->sonarjlata.ptslfi] [5]);

charstrC'.");

if(auv->constraint.snake) /* LOS guidance path simulator selection*/

cmov(auv->dyn.waypointfauv->dyn.postureno([I],
auv->dyn.waypoint[auv->dyn.posture-no] [21,
-auv->dyn. waypoint[auv->dyn.posture-nof [0]);

charstr("W");,

/* Plot the generated planes, sides in white, bottom in black *v
for (fi = 0; fi < 100; ++fi)

if (Iine->plane..prs[fij[0][0] ! 0.0)

if (line->lOC == 1)

RGBcolor(0, 0, 0);

Ielse

RGBcolor(10, 200, 100);

templ[[0= (float) line->plane,_pts[fi][0][0];
templ [1] = (float) line->planepts[fi]10][1];
templ [2] = (float) line->plane..ptstfi] [0][2];
temp2[0] = (float) line->plane-pts~fi] [1][0];
temp2[11 = (float) line->plane-ptstfi] [11111:,
temp2[2] = (float) line->planepts~t] [1][2];
temp3[0] = (float) line->plane..pts[fi][2]10j;
temp3 [1I] = (float) line->plane~pts[fi] [2] [11;
temp3[2] = (float) line->planepts[i][2J[21;
tcmp4[O] = (float) line->planc-pts[fij[3[01;
temp4[lI = (float) line->plane.Pts[fi]13][1];
temp4[2] = (float) line->plane-ptsf fi][3]f 2];

bgnpolygoriO;

v3f(temp 1);
v3f(temp2);
v3f(temp4);
v3f(temp3);
endpolygono;

91

select lo & selectj2O
Returns the appropriate value for use in the point-in-polygon test.

select Ii (a, b, k)
double a, b;
int k;

switch (pool~k].i 1)

case 0:
return (a);
break;

case 1:
return (b);
break;

select i2(a. b, k)
double a, b;
int k;

switch (pool [k].i2)

case 1:
return (a);
break;

case 2:
return (b);
break;

reset sonars()
Used to return sonars to original values for next cycle.

reset sonars(SONAR-AUV)
SONARSUITE *SONAR_AUV;
f

int ij;

free(SONARAUV->bottom -sonandirection);
free(SONARAUV->rightsonar.direction);
free(SONARAUV->left_soriar.dircction);
free(SONARAUV->front -sonarndirection);
free(SONAR_AUV-botomsonar.negate-ir);
free(SQNARAUV->rightsonar.negate-ir);

92

free(SONARAUV->Ieftsonar.negate-dir);,
free(SONAR_AUV->front-sonar.negate_dir);
free(SONAR_AUV->bottom-sonar.posiuion);
free(SONAR_AUV->right-sonar.position);
frce(SON.AR_AUV->lcf't-sonar.position):
free(SONARAUV->front-sonar.position);

SONARAUV->bottom-sonar.dircction = V3Ncw(0.0, -1.0, 0.0);
SONARAUV->bottom-sonar.ince-data.toojlong =FALSE;
SONARAUV->bottom-sonar.line-daa.tooj-ar-apart = FALSE;
SONARAUV->botcom-sonar.line-data.courseschange =FALSE;
SONAR&AUV->bottom-sonar.line-data.depth-change = FALSE;

SONARAUV->right-sonar.direction = V3New(1 .0, 0.0, 0.0);
SONAR_-AUV->right -sonar.line-data.toojlong = FALSE;
SONAR_-AUV->right-sonar.linc-data.too-farapart = FALSE;
SONAR_-AUV->right-sonar.Iine-data.course~change = FALSE;
SONARAUV->righl-sonar.linc-data.dcpJuchalgC = FALSE;

SONARAUV->left~sonar.direction = V3New(-1.0, 0.0, 0.0);
SONAR_-AUV->lcft-sonar.Jinc-data.too-long = FALSE;
SONARAUV->left-sonar.line-data.too_far~apart =FALSE;
SONARAUV->left -sonar.line-data.course change = FALSE;
SONARAUV->lcft-sonar.lincdaita.dcpth-change =FALSE:

SONAR_-AUV->front-sonar.direction =V3New(0.0, 0.0, -1.0);
SONARAUV->front-sonar.line_daa.toojong = FALSE;
SONARAUV->front-sonar.line -data.toojfar-apart = FALSE;
SONARAUV->front-sonar.line_data.course-change = FALSE;
SONARAUV->front-sonar. Iine-data.dcpth-changc = FALSE:

SONARAUV->bottom-sonar.negate.Air =V3New(0.0, 1.0, 0.0);
SONARAUV->right..sonar.negate-dir = V3New(-1.0, 0.0, 0.0);
SONAR_-AUV->left-sonar.negatedir = V3New(1 .0, 0.0, 0.0);
SONAR_-AUV->front_sonar.negatejlir =V3New(0.0. 0.0, 1.0);
SONAR_-AUV->bottom -sonar.position =V3New(0.0, 1.0, 0.0);
SONARAUV->right-sonar.position = V3Necw(-1 .0, 0.0, 0.0);
SONARAUV->lert-sonar.position = V3New(1.0, 0.0, 0.0);
SONARAUV->Cront-sonar.position = V3Ncw(0.0, 0.0, 1.0);

position..sonar()
Using the auv H-..matrix, move the sonars to the nose.

void position-sonar(sonar, auv)
TRANSDUCER *sonar;
Submarine *auv;

Vector3 *temp-pt:
int i, j;

93

pushmatrixO;,
loadmatrix(auv->dyn.H..matrix);

translate(O.0, 0.0, -32.0);
geumatrix(sonar->sonar-Matrix);
popmatrixo;

sonar->position->x = sonar->sonar-matrix [3] 101;
sonar->position->y = sonar->sonar-Matrix[3][II;
sonar->position->z = sonar->sonar..matrix[3][2];

Orient the sonars depending on heading, pitch, roll.

void direct-sonar(sonar, auv)
TRANSDUCER *sonar;

Sub ptr auv;

double temp;
double alpha = auv->dyn. heading *DEGTO-R AD;

pushmatrixo;
loadmatrix(auv->dyn.H_matrix);
getniatrix(sonar->sonar-matrix);
popmatrixo;

switch (sonar->line-data.loc)

case 1:

V3MultMatrixByPoint(sonar);
sonar->direction = V3Normalize(sonar->direction);
sonar->negate -dir->x = -sonar->direction->x;
sonar-> negate..d ir-> y = -sonar->dircction->y;
sonar->negate~dir->z = -sonar->direction->z;
break;

case 2:

V3MultMatrixByPoint(sonar);
sonar->direction = V3Normalize(sonar->direction);
sonar->direction->z = -sonar->direction->z;

sonar->negate-dir->x = -sonar->direction->x;
sonar->negatedir->y = -sonar->direction->y;
sonar->negate-dir->z = -sonar->direction->z;
break;

case 3:

94

V3MultMatrixByPoint(sonar);
sonar->direction =V3Normalize(sonar->direction),
sonar->direction->z = -sonar->direcLion->z;
sonar->negate-dir->x = -sonar->direction->x:
sonar->negatejlir->y = -sonar->dirccfion->y;
sonar->negatejlir->z = -sonar->directfion->z;
break;

case 4:

V3Mul(MatrixByPoint(sonar);
sonar->direction = V3Normalize(sonar->direction);
sonar->negate - ir->x = -soriar->direction->x;
sonar->negate-dir->z = -sonar->direction->z;
sonar-> negate- i r->y = -sonar->direction->y;
break;

case 5:

sonar->direction->x = sin(auv->dyn.pitch * DEG-TORAD) *cos(alpha);

sonar->dirciion->y = (fabs(cos(auv->dyn.pitch * DEG_TORAD)));
sonar->direction->z = -(sin(auv->dyn.pitch * DEG_TO_RAD) *sin(alpha));

sonar->direction = V3Normalize(sonar->direction);
sonar->ncgate~dir->x = -sonar->direction->x;
sonar->negate-dir->y = -sonar->direction->y;
sonar-> negatc-d ir- >z = -sonar->direction->z;

reset lineO

void reset Iine(Iine, closestpt, minjangc, auv)
LINESEGMENT * line;
Point3 *closest-pt;
double min-range;
Sub-ptr auv;

line->n_s =0;

line->i-s =0;
line->start-pt-no =0;
line->end-pLno = 0,
line->range-pt = 0;
line->sonarjlataps[0[0] = closest-pt->x;
line->sonar-data-ptsO]lI I = closest_pt->y:
line->sonar-daa.pts[01[21 = closestpt->z;
line->sonar-data-pts[O] [3] = m inrangc;
Iine->son,.- r~data.pts[OI[4] = auv->dyn.heading;
line->sonar-data-pts[01[51 = auv->dyn.Hmarix[31[1I ;

95

check -engtho

void check -length(line)
LINESEGMENT *line;

line->linejlength = fsqrt(SQR(line->sonar -data..pls[line->start-ptno] 10] -
line->sonar-data-pts[linc->end-pt-o][O]) +
SQR(Iine->sonar_data_pts[line->start-Pt-no] [II -

line->sonadata.pts[line->end.pt-no] [I]) +
SQR~line->sonardatapts[line->sartpt-nol[2] -

line->sonardaapts[line->end-ptnol [2]));
if(line->inejlength > MAXLINELENGTH)

line->too-long = TRUE;

check-di stance()

void check distance(line, closest pt)
LINESEGMENT * line:
Point3 *closest Pt.

double distance-betwecwprs:

if (line->loc == 1)
distanccjbctweenpts = fsqrt(SQR(line->sonar dataptslline->end..ptnol [0] -

closest-p->x) + SQRoine->sonardataptslline->enptno([I]I -
closcst-pt->y) + SQR(I ine->sonar data-pts[line->end ptno] [21 -

closest_pt->Z));
else

distance-bctween-pts = fsqrt(SQR(line->sonar-data~ptsl line->endptno] [0] -
closest-pt->x) + SQR(line->sonardataptslline->enptnoj [1] -
closcst-pt->z) + SQR(linc->sonar-data-pts[line->cndpt_nof 21 -

closest-pt->y));

if (distance_betwk~enps > MAXPTGAP)

Iine->too-far-apart =TRUE:

check courseO

void check-course(line, auv)
LINESEGMENT *line,
Sub-ptr auv;

double heading-di fference:

96

head ing&-i ference = line->sonar-.data-pts1 Iine->sart ptno] 14] - auv->dyn.hce ding,
if (headingjlifference < 0.0)

heading-difference = heading.difference + 360.0:
if (hea~ding _difference > I hU.0)

heading..difference = 360.0 - heading-difference;

if (hcadingdiffercnce > MAXCOURSECHANGE)
Iinc->course-change = TRUE,

check~depth()

void check-dcpth(line. auv)
LINESEGMIENT * line:
Sub-ptr auv;,

iI(fabs(lnc->sonar_dIauaps[iin->surt_pt_iolI5j - au%->dvn.H_mairix[3i 'I]) >

MAXDEPTHCHANGE)
line->depth-chang-e = TRUE:

ping..sonar()

void ping-sonar(sonar, auv, ray struct)
TRANSDUCER *snr
Sub-ptr auv;
SONARRAY *ray-struct,

direct_sonar(sonar, auv):,
positionsonar(sonar,auv);
ray..struct->ray-drection->x = sonar->direction->x;
ray-struct->ray-.direction->y = sonar->direction->y;
ray-stnict->ray-dirction->z = sonar->dircction->z;
ray~struct->ray.origil->(= soflar->positiofl->x;
ray-struct->ray.origin->y = sonar->position->y;
ray-struct->ray-origin->z = sonar- >posi tion->z:
tracc-ray(ray-stxuct, sonar);

trace-rayo

void tracejray(ray-struct, sonar)
SONARRAY *ray-struct:
TRANSDUCER * sonar;

Vcctor3 *pool-normal, *rav-negate-direction. *R:
int inter, any-inter, i, g-s. index, node _index;

97

double dsonar. t, ND, NO, UO, U 1, U2, VO, Vi1, V2;
double alpha, beta, distance, return angle, cum-range, shortest-distance;
Point3 *P-inter
Point3 *closest-pt;
PoinL.3 *temp-.pt;
P-inter = V3New(0.0, 0.0, 0.0);
closest..pt = V3New(0.0, 0.0, 0.0);
temp..pt = V3New(0.0. 0.0, 0.0);,
inter = FALSE;
any-inter = FALSE;
ray...negate-direc Lion = V3New(O.0,0.0,0.0);
R = V3New(0.0,0.0,0.0);
ray-negate-irection->x = -ray-StrUCt->ray-irction->x;
ray..negate-direction->y = -ray..struct->rayjirection->y;
ray...negate-direction->z = -ray..struct->ray..direction->z,
index = ray-.sitruc t-> ray~ma tri x _ndex;
cum-range =0.0;
shortest-d istance = 9999.0:

/* Cycle through all pool polygons in initialize-virtual..pool.c ~
for (i =0; i < 28; ++i)

/* Check for proper reflection angle (> 0 degrees) ~
return-.angle = V 3Dot(& pool Iii .normal, ray-negatQ.-direction);
if (return..angle > u.0)

ND = V3Dot(ray..sruct.>ray..irection, &pool[iI.normal),
NO = V3ot(ray..struct->ray. origin, &pool [i] .normal);
temp..pt->x = -poollil.vO.x;

tcmp-t->y= -pool[i].vO.y;
temp pL->z = -poolffl.vO.z;
d...sonar = V3 ot(temp-pt, &pool[i].normal),
t= -I * ((d-sonar + NO) / ND)J* Quick range check *

if ((t > 0.0) && (t <= 2 * MAX SONARRANGE) && (t < shortesL distance))

/* Calculate the point of intersection ~
P-inter->x =ray..struct->ray-origin->x + ray..struct->ray..direction->x t;
P-inter->y = ray-struct->ray-origin->y + ray..struct->ray direction->y t;
P-inter->z =ray -truc t->ray-oigin ->z + ray-.siruct->raydirection->z *:

UO = select-ilI(P_intcr->x, P-inter->y, i) -
select-il(pooltibv0.x, pool[ii.vO.y, i);

VO = selecti2(P inter->y, Pjnter->z, i) -
select-,.i2(poollij.vO.y, poolli) .vO.z, i);

inter =FALSE;

Ul=selectj Il(pool [il.vl.x, pool[ij.vO.y, i) -

U2 =select-ilI(pool iI.v2.x, poolfil.v2.y. i) -
sel-ct-il(pool[i.vO.x, pool[i].vO.y, i);

98

V I = selecti2(pool[i].vI.y, pool[i].vl.z, i) -
select i2(pool[i].vO.y, pool[i].vO.z, i);

V2 = selecti2(pool[i].v2.y, pool[iI.v2.z, i) -
select i2(pool[i].vO.y, pool[i].vO.z, i);

/*
* Check to see if point on plane is within
* polygon
*/

if (UI == 0)

beta = UO / U2;
if ((beta >= 0.0) && (beta <= 1.0))

8 [
alpha = (VO - beta * V2) / V 1;
inter = ((alpha >= 0.0) && (alpha + beta <= 1.0));

else

beta= (V0* UI -U0* V1)/(V2* UI - U2* VI);
if ((beta >= 0.0) && (beta <= 1.0))

alpha = (UO - beta * U2) / U 1;
inter = ((alpha >= 0.0) && (alpha + beta <= 1.0));

if (inter) /* Point was in poly */
I
anyinter = TRUE;
distance = V3DistanceBetweenTwoPoints(Pinter,ray-struct->ray-origin);
if (distance < shortestdistance)

shortestdistance = distance;
closest-pt->x = Pjinter->x;
closest-pt->y = P_inter->y;

closest-pt->z = Pjinter->z;
node-index = i;

if (any-inter)

R = compute-reflection(ray-struct, node-index);
ray-struct->ray-matrix [index] [0] += shortest._distance;
cur_range = ray-struct->ray-matrix[index]0];
raystruct->ray-matrix [index] I] = closest_pt->x;
ray-struct->ray-matrix [index] [2] = closest-pt->y;

99

ray-struct->ray.matrx [index] [31 = closesL-pt->z;
ray-struct->ray.matrix [index] [4] = -x
ray-strUCL->ray-matrixtindex] [51 = -y
ray-struct->ray-marixfindexl [6] =R>-
++ray-sruct->ra)ymarixmindex] [7]

if (raystruct->ray..matrix [index] [0] < 2 * MAXSONARRANGE)

*reset ray
*origin/direction-recurse

++ray..struct->ray_ matrix_index;
ray-struct->ray..matrix-index = ay-struct->raymatrix-index % 100;
index = ray-struct->ray-matrix-index;
ray-struict->ray-marix [index] [0] = cumrange;
ray-struct->ray-direction->x= -x
ray-struct->ray..direction->y = -y
ray..struct->ray-direction->z = -z
ray-struct->iay-origin->x = closcst-pt->x;
ray-struct->ray..origin->y = closest-pt->y;
ray-struct->ray.origin->z = closest-pt->z;
ray-struct->ray-matrix [index] [7] += ray-struct->ray-matri x[index - 1] [7]1;
if (ray-struct->raymarix [index] [7) < 4.0) /*recursion depth*/

trace-ray(ray-struct, sonar);

free(closest~pt);
free(P inter);
free(temp..pt);
free(ray..negatc-direcfion);

*compute -reflectiono

Vector3 *compute-refiedtion(raystructi)
SONARRAY *raystruct;
inti;

Vector3 *L, *two -N, *R, *Lemp;
double LdoLN;1

L = V3NeAw(0.0, 0.0, 0.0);
temp = V3New(0.0, 0.0, 0.0);
R = V3New(0, 0.0, 0.0);
L = V3Duplicate(ray...struct->ray-irection);
L = V3Negate(L);
LdotN = V3Dot(L, &pool [i].normal);
L = V3DivideByScalar(L, LdotN);

100

temnp = V3Duplicate(&poo1[i].normal);
temp =V3MultByScalar(temp, 2.0);
temp = V3Sub(temp, L, temp);
R = V3DivideByScalar(temp, V3Length(rtemp)),
free(L);
free(temp);
return(R);

getjrangeO

void getjange(sonarauv, ray..suuct)
TRANSDUCER *sonar;
Sub-ptr auv;
SONARRAY *raystruct;

double min-range, rangeto-pt. anglebcetwccn-rays, d, raneoficlosest-pt:
int i, j, mnin-found;
Vector3 *ray_ negate_direction;
LINESEGMENT *sonaline;
Point3 *closcst pt;

closestpt = V3New(0, 0.0, 0.0):
range of-closest-pt = 9999.0;
min-range = 9999.0;
mm _found =FALSE;
ray-.negate-direction = V3New(0.O,O.0,0.O);
sonar-line = &sonar->line-data;

for(i=O; i < 100; ++i)

if(ray~struct->raymatrix[iI[7] >= 1.0)

range-3o..pt = V3DistanceBetweenTwoPoints(&ray..struct->ray-.matrix[ij 1
sonar->position);

if((rangeto-pt + raystruct->ray matrix[ijjO]) < 2 * MAXSONARRANGE)

min-range = (rangeto-pt + ray-struct->raymatrix[i][0])/2;
if (minjange < range..oclosestpt)

ray-negate-directfion->x = ray..struct->ray-.matrix [i][1] - sonar->position->x;
ray-.negate direction->y = ray...struct->ray .. ari l2 - sonar->psition->y;
ray-negate-direction->z = ray-sruct->ray-marixi[31 - sonar->position->z;
anglc-bctween-rays = V3Dot(raynegate-direction, sonar->di rec Lion);

if (angle-betwccnjrays > 0.99619) /* cos of five degrees *

sonar->line -data. sonar data_pts[sonar->line data.n_s] [3] minjange;
sonar->line-data.sonar-data-pts[sonar->ine-data.n_s161 =minjange;

min-found = TRUE;

101

range of-closestPt =min-ange;
closest-pt->x = raystruct->ray-matrix [i] U1;
closest-pt->y = raysruc->ray.matrix [ii[21;
closest -pt->z =rav struct->rav matrix Ii][31:

if (min-found)

pushmatrixo;
Ioadmatrix(auv->dyn.HWmatrix);
switch (sonar->line-data.loc)

case 1:
translate(0.0, -sonar->line-data.sonaridata-pts[sonar->line data.ns] [31,

-32.0):
break;

case 2:
translate(sonar->ine_daa.sonardata pts[sonar->inedata.n-s] [31,0.0,

-32.0)
break;

case 3:
translate(-sonar->line_data.sonar data ptsfsonar->line data.n si [3] ,0.0,

-32.0)
break;

case 4:
translatc(O.0, 0.0,

-sonar->line-dawa.sonar_atapts[sonar->Iine data.n_s][3] - 32.0)
auv->front-range =

sonar->line-data.sonar-dataptssonar->line data.ns][31;
break;

gctmatrix(sonar->sonar matrix);
popmatrixo;

if(match modcl(sonar line) == TRUE)

sonar->Iine-data.sonar-data-pts[sonar->ine-data.n-s 131 =1.0;

++sonarIine->ns;
sonarjline->n-s = sonar-line->n..s % 100;

else

if(sonarjline->range-pt < 2)

102

++sonar-line->n-s;
sonarIine->n-s = sonar-linc->n-s % 100;

++sonarline->range-pt;

sonar->line -data.sonar-dataps[sonar->line data.n-SI[01 = sonar->sonarmatix[3[OJ;
sonar >line _data.sonar _daza-pissonar->ine-data.ns]71) = sonar->sonarmatrixl3]I1;
sonar-A hne-data.sonar -daia-ptssonar->ine_data.n_s][2] = sonar->sonar-matix[3][2];
sonar->Ii ne-data.sonar-daa_pts [sonar-Aline_data.n_sl [4] = auv->dyn.hcading;
sonar->line-data.sonar-data-ps~sonar->line dara.n_sJ[5] = auv->dyn.Hmatrix[3]t 1];

if (sonarjline->range-pt > 1)

if(sonar->line-data.sonar-dat2Lpts[sonar->line-data.n_s[3j == 1.0)

if(sonarjline->range-pt > MIN_NOPTFS)

end-line~segment(sonarjline);
reset-line(sonar line,closest pt, min-range, auv);
sonar-line->sonar-datapts[sonar-line->ns] [31 = min-range;

else

reset-line(sonar-line, closestpt, min range, auv);
sonarI inc->sonar-dawapts[sonar-linc->ns] [3] = min range;

else

check_course(sonar line, auv);
checkjiepth(sonarjine, auv);

if((sonar-line->toojlong == TRUE) 11 (sonar-line->courseschange == TRUE)
11 (sonarjline->depth-change == TRUE) 11 (sonarjine->toojar.apart == TIRUE))

if(sonarjlinc->range-pt > MIN_NQPTS)

endIinesegment(sonarjline);
reset_Iine(sonarj- ineclosestpt, min-range, auv);
sonarI ine->sonar-datapts[sonar-line->nsl[3] = min-range;
line-segmentjinit(sonar);

else

reset~line(sonarjine. closestpt minjange, auv);
son arI ine ->sonar-datapts [sonarI ine ->ns] [31 = min-range;
line_segmentjinit(sonar):

else

103

++sonar-line->rangc-pt;
if (sonar line->loc != 5)

if (sonar-line->range-pt <= MINNOPTS)

line-Segmentjinit(sonar);

if (sonar -line->rangept > MINNO_PTS)
linescgsomput(sonar);

free(ray-negate-direction);
free(closestpt);

match-model()

int match_model(sonar -line)
LINESEGMENT *sonar-line;

int match, i;
match =0;,

for(i = 0; i < 28; ++i)

if(fabs(sonar -line->r sonar - pool[i].r) <= MAX_DELTAR) &&
(fabs(sonar-line->theta-sonar - pool[iibthcta) <= MAXDELTA_THETA))

match = 1;

retum(match);

replay-sonar()

void replays-onar-data(sonar, auv)
TRANSDUCER *sonar;
Sub-ptr auv;

double S1N-5, raw-rng;
SIN_5 =.087155;

raw-mg = auv->dyn.commandcd-posturctauv->dyn.posturenoI 14];
pushmatrixo;
loadmnatrix(auv->dyn.H matrix);
rotate(-(Angle)auv->dyn.posschangel5l, 'y');
rotate((Angle)auv->dyn.posschange[4], 'x');

104

rotate(-(Angle)auv->dyn.pos-change[3], Tz);

switch (sonar->line-data.loc)

case 1:
translate(0, -raw rng * CONVERTTOINCHES, -32.0);
break;

case 2:
translatc(rawjrng * CONVERTTO_INCHES,0.0, -32.0);
break;

case 3:
if(fabs(auv->dyn.commanded-posturefauv->dyn.posturegiol [91) > 0.04357)

raw-ng += raw...rg * SIN-5;
translate(-rawjrng * CONVERTTOINCHES,0.0, -32.0);
break;

case 4:
translate(0.0,0.0, -raw-rng * CONVERTTOINCHES - 32.0);
break;

getmatrix(sonar->sonar matrix);
popmatrixo;

sonar-> Ii nc-data. sonar-data-pts [sonar- >1 inc da ta. n_sl] 0 = sonar->sonar-matrix[3][0];
sonar->li ne-data. sonar-data-pts [son ar->line_daita.n_s] [II sonar->sonar_matrix[3][I]:,
sonar->line-data.sonar-data-pts(sonar->line data.n_s]R2I = sonar->sonar-matrix[3)[2];
sonar->line-data.sonar-data-pts[sonar->Iine data.n_s][3] = auv->dyn.H_matrix[3][0];
sonar->line-data.sonar _data-pts[sonar->line-data.n_s]14] = auv->dyn.Hmarix[3[I1;
sonar-> line-data. sonar-data-ptsf sonar-> i ne_data. n_s] [5 = auv->dyn.H_matrix[3][2];
++sonar->line_data.n_s;
sonar->line-data.n-s = sonar->line-data.n s % 1500;

Vector library routines from "GRAPHICS GEMS", edited by Glassner [Ref. 261

1* return the dot product of vectors a and b *
double V3D3ot(a, b)

Vector3 *a, *b;

return ((a->x * b->x) + (a->y *b->y) + (a->z *-z)

Vector3 *V3Negate(v)
Vector3 *v;

v->x = -- X
v->y = -- y
V->z = -- Z
return (v);

105

/* return vector sum c = a + b *[

Vector3 *V3Add(a, b, c)
Vector3 *a, *b, *c;

c->x = a->x + b->x;
c->y = a->y + b->y;
c->z = a->z + b->z;
return(c);

/* create, initialize and return a new vector */
Vector3 *V3New(a, b, c)

double a, b, c;

Vector3 *v = NEWTYPE(Vector3);

V->X = a;
v->y = b;
V->Z = C;
return (v);

/* scales the input vector to the new length and returns it */
Vector3 *V3MuitByScalar(v, scalar)
Vector3 *v;
double scalar;

v->x scalar;
v->y *= scalar;
v->z *= scalar;

return(v);
I

/* return vector difference oc = a - b */
Vector3 *V3Sub(a, b, c)
Vector3 *a, *b, *c;

c->x = a->x - b->x;
c->y = a->y - b->y;
c->z = a->z - b->z:
return(c);

/* divides the vector by a scalar and returns it */
Vector3 *V3DivideByScalar(v, scalar)
Vector3 *v;
double scalar;
f

if (scalar != 0.0)

106

v->x =v->x/scalar;
v->y = v->y/scalar;
v->z = v->z/scalar;
return(v):

/* returns squared length of input vector ~
double V3SquaredLength(a)
Vector3 *a;

return(SQR(a->x) + SQR(a->y) + SQR(a->z));

/* returns length of input vector ~
double V3Length(a)
Vector3 *a;

return(sqrt(V3Squarcdlcength(a))):

/* normalizes the input v'ector and returns it ~
Vector3 *V3Normalize(v)
Vector3 *v;

double len = V3Length(%v):
if (len != 0.0)

v->x 1=len;
v->y 1=len;
v->z 1=len;
return(v);

/* create, initialize, and return a new vector ~
Vector3 *V3Duplicate(a)
Vcctor3 *a;

Vector3 *v = NEWTYPE(Vector3);
v->x = -x
v->), = -y
v->z = -z
return(v);

/* return the distance betwqeen two points *

double V3DistanceBetweenTwoPoints(a, b)
Point3 *a, *b;

double dx = a->x - -x
double dy = a->y - -y

107

double dz = a->z - -z
return(sqrt(SQR(dx) + SQR(dy) + SQR(dz))):,

void V 3MulLMatrixByPointksonar)
TRANSDUCER *soar

Vector3 *twmp-pt;

temp.pt = V3New(0.0, 0.0, 0.0);
temp-pt->x = sonar->sonar-matrix[0][0I * sonar->direction->x +
sonar->sonar-matrix[OJ[1I * sonar->direction->y +
sonar->sonar-matfix [0][2] * sonar->direction->z;
temp..pt->y = sonar->sonar-matrixl [1)j10] * sonar->direction->x +
sonar->sonar-matixil]ihl * sonar->direction->y +
sonar->sonar-matrix [1][2] * sonar->direction->z;
temp...pt->z = sonar->sonar-matrix[2][O] * sonar->direction->x +
sonar->sonar_mairix [2] [1] * sonar->direction->y +
sonar->sonar_rnaurixj-lj2lj sonar->direction->z:,
sonar->direction->x = temppt->x;
sonar->direction->y = temnp pt->y:;
sonar->direction->z = temp-pt->z;

This package takes individual range points from sonar-bay.c and
computes a least-squares fit line for the points. The line is ended
for various reasons and a plane is fit to the line, based on the
computed end points and the width is determined by the range from the
sonar. Points and planes are passed back to sonar_bay.c for plotting

#include <stdio.h>
#include <math.h>
#include "auv.h"
#include "sonar.h"

line-segmcnt-init()
Initialize a line segment and its associated variables/flags
Called from sonarjrange() in sonar-bay.c.

line-segmentjinit(sonar)
TRANSDUCER *sonar;

LINESEGMENT * line;

line = &sonar->line data;
if((line->loc != I) && (line->loc 5))

convert-coords(line):

108

/* Read in first points to establish initial line segment ~
line->linejlength = 0.0;
Iine->bad-pt = FALSE;

/* accumulate variables *
line->sgmx += Iine->sonar_data~pts[line->n-sI[0I;
line->sgmy += line->sonar-datapts[line->ns][1];
line->sgmx2 += SQR(linc->sonardatap s[inc->n.s] [0]);
line->sgmy2 += SQR(line->sonardata...pts~lin->ns][1]);
Iine->sgmxy += line->sonar_data-ptslline->ns][0] * line->sonar-daapts[Iine->ns[1];
line->endpt~no = line->nws;
/* Update the counters ~
if (line->n-S = 99)

line->n-s = 0
else

++line->n-s;

if (line->range-.pt == 0)
line->start-pt-no = line->n-s;

++line->is;/* current line segment point counter ~

if (line->range-Pt == MfINNOYPTS)/* usC x data points for first segment *

/* Calculate first line segment values ~
Jine->mux = iine->sgmx / line->i-s;
line->muy = line->sgmy / linc->i_s;
line->muxx = Iinc->sgmx2 - (linc->sgmx *line->sgmx) / line->i-s;
line->muyy = line->sgmy2 - (line->sgmy *line->sgmy) / line->i-s;
line->muxy =line->sgmxy - (line->sgmx *line->sgmy) / line->i-s;

line->end..pLno = line->ns - 1I
if (line->end~pt.yo < 0)

line->end.ptno = line->endptno + 100;

Iine->theta-sonar = (atan2(-2.0 * line->muxy, (line->muyy - line->muxx)) 2.0;
line->r-sonar = linc->mux * cos(l ine ->the ta_sonar) + linc->mu), * sin(linc->theta-sonar);

for (line->js = 0; line->j_s < MINNOPTS; ++line->ts)

line->js = (line->j-s + line->starLptno) % 100;
line->sgmdelta.sq += SQR(line->sonar data..ptslline->j-s]1OI - Iine->mux)

* SQR(cos(line->thcta sonar));
line->sgm-delta-sq += SQR(line->sonar-data.ps[line->L-sI[1] - Iine->muy)

* SQR(sin(linc->theta sonar));
line->sgm-delta~sq += 2.0 * (line->sonar-data-ps[line->jLsI[0I - Iine->mux)

" (line->sonar_data pts~line->L~sliuI - line->muy)
" cos(line->theta_sonar) * sin(line->thcta_sonar);

109

lin-seg-computeu)
Read in subsequent data points, after a line segment has been
initialized and more range values are obtained

line-seg-compute(sonar)
TRANSDUCER *sonar-,

LINESEGMENT line;

/* line &= sonar->line-data; *
line &sonar->line data;

if ((line->loc != 1) && (line->loc != 5))
convert-coords(line):,

/* Calculate test values */
line->sigma = line->sgm deiasq / linc->i-s;

/* Test new point for linearity fit */
line->delta line = linc->sonar dataptsline->n][0] cos(line->thcta sonar)

+ line->sonar-data ptsllinc->n_sI[l] * sin(linc->thcta sonar)
- line->r-sonar;

if (fabs(line->dltaJine) < (Iirie->sigma * ci1)) 11 (fabs(linc->dclta-line) < c2))

line->sgmx += line->sonar-data-ptsllinc->ns[0];
line->sgmy += line->sonar - atapts[line->n-S] [I j;
line->sgmx2 += SQR(linc->sonar -datapts[line->n..s] 0]);
line->sgmy2 += SQR(linc->sonar_datapts[line->ns~t 11);
line->sgmxy += line->sonar dataptslline->nsI[0] * line->sonardatapts[l inc->ns[[I;
line->mux = line->sgmx / (line->i-s + 1);
line->muy = Iine->sgmy / (line->i-s + 1);
line->muxx = line->sgmx2 - SQR(line->sgmx) / (line->i_s + 1);
line->rnuyy = line->sgmy2 - SQR(Iine->sgmy) /(line->i_s + 1);
line->muxy = line->sgmxy - (line->sgmx * Iine->sgmy) / (linc->iLs + 1);

/* calculate ellipse values *
line->m major = (line->muxx + line->muyy) / 2.0 - sqrt((Iine->muyy - line->muxx)

* (line->muyy - line->muxx) / 4.0 + SQR(line->muxy));
line->m-minor = (line->muxx + line->muyy) / 2.0 + sqrt((line->muyy - line->muxx)

* (line->muyy - line->muxx) / 4.0 + SQR(line->muxy));
line->dmajor = 4.0 * sqrt(fabs~line->mminor / (linc->i_s + 1)));
line->d-minor = 4.0 * sqrt(fabs(line->mmajor / (linc->is + 1)));

110

/* Test new point for ellipse line->thinness ~
if ((line-Ad.minor / line->d..major) < c3)

Iine->endptno =Iine->ns;/ update end point ~

" update line segment parameters to include new
" point

line->theza-sonar = 0=za2(-2.0 * linc->muxy, (Jinc->muyy - line->muxx))) /2.0;
Iine->r-sonar = line->mux * cos~linc->thetasonar) + line->muy

* sin(linc->theta_sonar):

line->sgm..delta-sq += 2.0 * (line->sonar-daapts[line->ns][O] - line->mux)
" (linc->sonar-data_ptsiline->n-slI -1 line->muy)
" cos(line->theta_sonar) * sin(line->theta-sonar);

I ine->sgm..delta..sq += SQR(ine->sonar datapts[line->n sl I1 - line->muy)
*SQR(sin(lane->theta sonar)),

line->sgm-delta-sq += SQR(Iine->sonar-data~pts[Iine->ns[01 - line->mux)
* SQR(cos(line->thcta_ sonar)):

if (line->n s == 99)
line->n-s =0:

else
++linc->n-s;

++line->is;
line->deta-x = line->sonardatapsline->startptno[0]

- linc->sonardata-ptsl line->end..ptj~io] 1];
line->dlay = linc->sonar_datap s[line->startt nol [II

- linc->sonar -dataptslinc->cnd ptnol[11,
line->Iinc-length = sqrt(SQR(l ine->deltax) + SQR(line->deltay)

+SQR(linc->sonar data ptsj line->start ptno][13]
- linc->sonar-datapts[linC->end~ptno] [3]));

/*if (line->line -lngth > NIAXLINE_-LENGTH)

line-x.oo-lorg =TRUE;
end-linc-sgment(line):

check_for_termninacion(line):*/
Ielse

linc->bad-pt = TRUE;
end-line_ segment(line):

else

line->bad-pt = TRUE;
end-] ine-scgmcnt(1 mne):

endjlinecsegiientU
Wrap up a line segment if bad data pt, course change, depth change,
or segment max length reached.

end jine-segment(linc)
LINESEC NIENT * line;

int i;
double line-angle;

if ((linc->bad-pt == TRUE))

/* start ne" line segnient ~
Iinc->sgmx = line->sonar datapts~line->n s][01;
line->sgmny = line->sonardaapts[linc->ns] [1]:
linc->sgmx2 = SQR(linc->sonar-datapts[linc->ns]l0I),
line->sgmy2 = SQR(line->sonar_data~pts[line->n-s][1]);
line->sgrnxy = line->solrd.-ptisline->n-s[1 * linc->sonardatapts[lii c->n-sl 1:
line->i_ s = I:
linc->signia = 0;
linc->sgm-delta-sq = 0;
line->range-pt = 1;

else
linc->range Pt = 0:

/* close out old segment, convert radius to positive value first *
if (linc->r-sonar < 0)

line->thcta-sonar -180 * DEC_T'O_RAD + line->theta sonar;
ljne->r-sonar = A1 line->r-sonar,

/* determine start and end points on the computed line segment *
linc->start-pt-x = line->sonar-data-pLslflin->startptno][0];
line->smtarjy = line->sonar-data-pts~line->starpp~no] [I];
line->end-pt-x = line->sonar-data-pts[line->end-ptno[01:
line->end-pt.y = I ine->sonar-dataptslline->end..ptnol[1];
linc->de1taline = li ne->startpt-x * cos(line->theta-sonar) + line->star-pty

* sin(line->theta_sonar) - fabs(line->r-sonar);
line->startpt-x = line->startpt_x - (line->delta_line * cos(line->thcta_sonar)):
line->stat-ptty = linc->santpty - (line->deltajine * sin(line->theta sonar));
line->delta-line = line->end-pt-x * cos(line->theta_sonar) + line->end-pt-y * sin(line->theta_sonar)

- fabs(i ne- >r_ sonar);
l..ie->endptx = line->cndpt-x - (line-Adelajline * cos(line->Ithetasonar));
line->cnd- pt-y =line->cndpt y - (line->delta-line * sin(line->thetasonar)):
line->dcltax = linc->start-pt-x - line->ndptx;

112

line->deltay = line->start..pty - line->end-pty;
line->line-length = sqrt(SQR~line->delta_x) + SQR(line->delta.y)

+ SQR(line->sonar..daita..pts[line->staitpt.nol[2]
- line->sonar-daapts[line->endptno[2));

if line->loc == 1)t* Bottom sonar ~

linecangle = atan2(line->sonar-data-pts[line->start-ptnol[2]
- linc->sonar-datajnts[line->endptno[21,
line->sonar_data_pts(line->startnol(01

line->sonar-datapts~line->endptnol [01);
line-angle = lineangle - PIOVER2;

else

line-angle = atan2(line->sonar dataptsline->startptno] [1]
- line->sonar-datapts[line->endptnol [1],
sqrt(SQR(line->sonardata.Jnsfline->star~p _no][0]
- line->sonar-data-pts[line->end-ptno] [01)
+ SQR(line->sonar data...pts[line->startp&.nol [2]

-line->sonar-data..pts[line->end..ptno] [2])));

if ((line->Aoc == 1) 11 (Iine->loc == 5))/* Bottom sonar ~

offsetlc = line->sonar-dataps[linc->suirt-ptno][3] * 0.087 1548 * cos(linc-an.lc):
offsetl s = linc->sonar-datapts[line->swartptno] [3] * 0.0871548 * sin(linc-anglc);
offset2c = linc->sonar-daapts[line->endptno[3] * 0.0871548 * cos(linc-angle);
offset2s = line->sonar-data.pts[line->end..ptno][3] * 0.087 1548 * sin(line..anglc);

else

ofstc=ln-snrdtIt~ic>trtp~o[1*00758csfn-nl)
offsetlc = line->sonar-datapts[line->star-pt-noj[3] * 0.0871548 sico(linc-anglc);
offsetls = line->sonar -data-ps[line->staitpp-no][31 * 0.087 1548 * s(line-angle);

offset2s = line->sonar-data..ptslline->endptno][31 * 0.087 1548 *sin(line-angle);

if ((line->line_length >24.0) && (line->loc !=4))

if (line->n-plane < 99)
++line->n..plane;

else
line->n-plane = 0;

Iine->n_s =0;
line->start-pt-no = 0;

p line->end-p..no = 0;

for (i = 0; i < 100; ++i)
line->sonar-datajtsi[3] =0.0;

if(offsetlc > 48.0) /* limit width of planes to four feet ~

113

offsetlc = 48.0;
if(offsetls > 48.0)

offsetls = 48.0;
if(offset2c > 48.0)

offset2c = 48.0;
if(offset2s > 48.0)

offset2s = 48.0;

/ *********************************

convert-coordsOlne

LINESEGMENT *lIine;

double temp-val:

*store z data into y var, y into z for bottom sonar

temp..val = line->sonar -data_pts[lin->nsl2];
line->sonar -data_pts[linc->nsj 2] = line->sonar-dataptsfline->n_s]f I],
line->sonar-data-pts[linc->ns][11 = temp..val;

/ *************************************

check-for-terrminaion(n)

LINESEGMENT * line;

if (sqrt(SQR(ine->sonar_dataptstline->start~no]tI0
- line->sonar -data pts[Iine->end pt no] [01)
+ SQR(linc->sonar-data-pts[linc->start-pinoJ [1]
- line->sonar.. dara~jpis[line->end.ptlno] [I]
+ SQR(line->sonar -datapts[Iine->start.ptno[2
- line->sona-data-pts[line->endptno] [21))

> MAXLINE_LENGTH)

line->end..pt-no = line->endptno - 1;
line->too-long = TRUE;

if ((line->loc == 1) 11 (line->loc == 4))

if (fabs(line->sonar _data..psline->startptno] [41
- line->sonar-data_ptsfline->endptno[41)

> MAXCOURSECHANGE)

114

line->course-change =TRUE:

else

if (fabs~line->sonar _data-pts[line->sanr.pt.no] [4]
- line->sonar-data_pts[line->endptnoll4l)

> MAXDEPTHCHANGE)

line->depthschange =TRUE;

if ((Iine->toojlong) 11 (line->courseschange) 11 (line->depthschange))
end line segment(line);

seLplane..ptr(i)

LINESEGMENT * line;

int i;
double line..angle;

if ((Iine->Aoc == 1) 11 (line->loc == 5))

line->plane-ptsl line->n~plane] [00= line->sonar..datapts[line->start.pLno[01 + offset Ic:
line->plane..pts[line->n..plane] [01 [1] = line->sonar-datapts[line->start-no][1];
line->plane..pts[line->n.plane][O] [2] = line->sonar..data..pts[line->startpLno] [2] + offsetls;
line->piane..pzsfline->nplane][1][0] = line->sonar...data-pts[line->start pt~noJ[0] - offsetlc;

line->plane-pts[line->n..plane]l [] = Iine->sonar-data.pts(line->smart Pt_no] [1];
line->plane..pts[line->n..plane] [1](2] =line->sonarjldatajts[line->startptno] [2] - offsetl 5;

line->planepts[line->nplanel [2][01 = line->sonar.data-pts[line->end-pt.no] [0] + offscr.2c;

line->plane-ptslline->n-pane121 11 = line->sonar -datapts[line->endptno] [1]:
line->plane...pcstline->n..plane][2l[2] = Iine->sonar dataptsline->end..ptno] [21 + offset2s;
line->plane...pts[line->n..plane] [31(01 = line->sonar _data~pts[line->endpt.no] [0] - offset2c;

lie>lnptLin -nplane] 13111] = line->sonardata-pts[line->end-pt-no] [IL

line->plane-.pts[line->n-plane (3] [2] = line->sonardatapts[line->endptnol [2] - offset2s;
Ielse

line->plane..ptstline->n-planel [01(01 = line->sonar..data..ptstline->start ptno] [01
+ offset Ic * cos(Iine->theta-sonar);

line->plane-pts~line->n-pane] [011 = line->sonar-dataptsp~line->start-p.no][2] + offset is

115

+ offsetlc;
Iine->plane-pts[Iine->nplane[OI[2] = Iine->soniar data pfs[Iine->start-pt-foil I];
line->plane..pts[Iine->n..plane] [1][O] = Iine->sonarjdatapts[ine->start ptno] [0]

+ offset]lc * cos(Iine->theta..sonar);
linc->planc-ptslirne->nplanc) [I] j[I] =Iine->sonar-ala..ptsslinc->siart-pt-no] j

- offsedls - offsetl c;
line->plane.ptsflire->nplane[1] [2] = line->sonar~datapts[Iine->starn pL-no][1I;
line->plane-pts[Iine->n-plane] [2] [0] = line->sonardatapts[line->endpt~no] [0]

+ offsetlc * cosaine->heta-sonar);
Iine->plane-pns[ine->nplanel [2] [1] = Iine->sonardatajpts[Iine->endjtno] [2]

+ offset2s + offset2c;
Iine->plane..pts[ine->nplaneI [21[2] = line->sonardatapts[ine->endpt.no] [I];,
Iine->plane ptslline->nplane] 13] [0] = line->sonarjlataptslline->endpt.no] [0]

+ offsetlc * cos~line->theLELsonar);
Iine->plane-ptsIine->n..plane][3][1] = line->sonar datapsine->end-pt..no]f2I

- offset2s - offset2c;
line->plane-pts[line->n-planel [3] [2] = line->sonar-data~pts[Iine->endp.nol[1];

116

LIST OF REFERENCES

1. Robinson, R.C., "National Defense Applications of Autonomous Underwater
Vehicles", IEEE Journal of Ocean Engineering, Vol. OE-1 1, No. 4, pp. 462-467,
October 1986.

2. Watkins, J.D., "The Maritime Strategy", U.S. Naval Institute Proceedings, pp. 7-11,
January 1986.

3. Blidberg, D.R., and Chappell, S.G., "Guidance and Control Architecture for the
EAVE Vehicle", IEEE Journal of Ocean Engineering, Vol. OE- 11, No. 4, pp. 449-
461, October 1986.

4. Bonsignore, J., "Underwater Multidimensional Path Planning", Master's Thesis,
Naval Postgraduate School, Monterey, CA, September 1991.

5. Boncal, R., "A study of Model Based Maneuvering Controls for Autonomous
Underwater Vehicles", Master's Thesis, Naval Postgraduate School, Monterey, CA,
December 1987.

6. Friend, J., "Design of a Navigator for a Testbed Autonomous Underwater Vehicle",
Master's Thesis, Naval Postgraduate School, Monterey, CA, December 1989.

7. Rogers, R., "A Study of 3-D Visualization and Knowledge-Based Mission Planning
and Control for the NPS Model 2 Autonomous Underwater Vehicle", Master's
Thesis, Naval Postgraduate School, Monterey, CA, December 1989.

8. Good, M., "Design and Construction of a Second Generation Autonomous
Underwater Vehicle", Master's Thesis, Naval Postgraduate School, Monterey, CA,
December 1989.

9. Healey, A. J., McGhee, R. B., Cristi, R., Papoulias, F A., Kwak, S. H., Kanayama, Y.,
Lee, Y., "Mission Planning, Execution, and Data Analysis for the NPS AUV 11
Underwater Vehicle", Proceedings of International Advanced Robotics Programme
1st Workshop on Mobile Robots for Subsea Environments, Monterey, CA, pp. 177-
186, October 1990.

10. Crowley, J. L., "Navigation for an Intelligent Mobile Robot", IEEE Journal of
Robotics and Automnation, vol. RA-I, no. 1, pp. 31-41, March 1985.

117

11. Drumheller, M., "Mobile Robot Localization Using Sonar", IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. PAMI-9, no. 2, pp. 325-332, March
1987.

12. Flynn, A. M., "Redundant Sensors for Mobile Robot Navigation", MIT Artificial
Intelligence Lab., AI-TR-859, September 1985.

13. Brooks, R. A., "Visual Map Making for a Mobile Robot", Proceedings of the IEEE
Conference on Robotics and Automation, pp. 824-829, 1986.

14. Elfes, A., "Sonar-Based Real-World Mapping and Navigation", IEEE Journal of
Robotics and Automation, vol. RA-3, no. 3, pp. 149-165, 1987.

15. Kanayama, Y., Noguchi, T., "Spatial Learning by an Autonomous Mobile Robot with
Ultrasonic Sensors", Univ. of California Santa Barbara Dept. of Comp. Sci. Technical
Report TRCS89-06, February 1989.

16. Blidberg, D. R., Chappell, S., Jalbert, J., Turner, R., Sedor, G., Eaton, P., "The EAVE
AUV Program at the Marine Systems Engineering Laboratory", Proceedings of the
International Advanced Robotics Programme 1st Workshop on Mobile Robots for
Subsea Environments, Monterey, CA, pp. 33-42, October 1990.

17. Bahl, R., "Object Classification Using Compact Sector-Scanning Sonars in Turbid
Waters", Proceedings of the International Advanced Robotics Programme ist
Workshop on Mobile Robots for Subsea Environments, Monterey, CA, pp. 81-95,
October 1990.

18. Cushieri, J., "3-D Imaging Using an Electronically Scanned FLS", Proceedings of the
Fifth International Symposium on Unmanned Untethered Submersible Technology,
pp. 310-319, June 1987.

19. Rigaud, V., "Localization of AUV by Data Fusion and Stochastic Triangulation on
Passive Seamarks", Proceedings of the International Advanced Robotics Programme
Ist Workshop on Mobile Robots for Subsea Environments, Monterey, CA, pp. 171-
176, October 1990.

20. Datasonics. Programmable Sonar Altimeter Reference Manual, The Model PSA-900,
Datasonics, Inc., Cataumet, MA.

21. Urick, R. J., Principles of Underwater Sound, McGraw-Hill Book Co., New York,
NY, 1983.

22. Lorhammer, D., "An Experimental Study of an Acoustic Ranging System for AUV
Obstacle Avoidance ", Master's Thesis, Naval Postgraduate School, Monterey, CA,
September, 1989.

118

23. Floyd, C. Kanayama, Y., Magrino, "Underwater Obstacle Recognition Using a Low-
Resolution Sonar", Proceedings of the Seventh International Symposium on
Unmanned Untethered Submersible Technology, September 1991.

24. Wilkinson, W. P., "A Mission Executor for an Autonomous Underwater Vehicle",
Master's Thesis, Naval Postgraduate School, Monterey, CA, September 1991.

25. Jurewicz, T. A., A Real Time Autonomous Underwater Vehicle Dynamic Simulator,
Master's Thesis, Naval Postgraduate School, Monterey, CA, December 1990.

26. Glassner, A., ed., Graphics Gems, Academic Press, Inc., Boston, MA, 1990, pp. 390-
393.

119

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

Dudley Knox Library 2
Code 52
Naval Postgraduate School
Monterey, CA 93943

Mack O'Brien
Charles Stark Draper Laboratory. Inc.
Mail Station 5C
555 Technology Square
Cambridge, MA 02139

Chairman, Code CS 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Dr. Yutaka Kanayama
Computer Science Department Code CS/KA
Naval Postgraduate School
Monterey, CA 93943

Dr. Yuh-jeng Lee
Computer Science Department Code CS/LE
Naval Postgraduate School
Monterey, CA 93943

Chairman, Code 69 Hy
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

CDR Charles A. Floyd
Computer Science Department/USNA
Chauvenet Hall 9F
572 Holloway Rd.
Annapolis, MD 21402-5002

120

Glenn Reid, Code U401
Naval Surface Warfare Center
Silver Spring, MD 20901

RADM Evans, Code SEA92
Naval Sea Systems Command
Washington, DC 20362

Dr. G. Dobeck, Code 4210
Naval Coastal Systems Center
Panama City, FL 32407-5000

Dick Blidberg
Marine Systems Engineering Lab
SERB Building 242
University of New Hampshire
Durham, NH 03824

121

